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I. INTRODUCTION

Much progress has been made in robots’ ability to obtain
complex behaviors through reinforcement learning and reward
functions. Learning behaviors using rewards provides two key
flexibilities: rewards can be learned through many modalities
(e.g. demonstrations, preferences, labels) [6], and rewards are
often more transferable than policies to new environments
[21]. However, using rewards to generate behavior suffers from
a big caveat: it is very difficult to ensure predictable behavior
in all possible scenarios. For instance, a racing boat trained to
maximize its game score ended up doing so by looping over
reward targets rather than quickly finishing the race [3].

As robots enter society, it is paramount that their reward
functions and subsequent behaviors are transparent, such that
robot actions are understandable and predictable to humans
[5]. Transparency is critical for not only robot developers in
reviewing and ensuring proper robot function, but also for end-
users in having calibrated expectations for robots, preventing
undertrust and disuse, or overtrust and misuse [22].

A natural way that humans communicate and comprehend
each others’ policies is through demonstrations. Thus, one way
to increase the understandability and predictability of robot
policies is also through demonstrations [1, 2, 11, 12, 23].
Furthermore, human behavior is commonly modeled as being
driven by reward functions [14], which can be inferred by other
humans through reasoning akin to inverse reinforcement learn-
ing (IRL) [13]. My research thus models humans as IRL
learners, and explores how a robot can teach its reward
function to humans using informative demonstrations.

Though we borrow from the IRL literature to model human
learning from demonstrations, we note that humans differ from
algorithmic learning in a key way: humans are limited in
their computational capacity [7] and may struggle to fully
understand all the nuanced implications of a demonstration
given their current understanding. Instead of providing demon-
strations that simply maximize information gain, we crucially
observe that informativeness and difficulty are often two sides
of the same coin to humans [16] and thus show demonstrations
that balance the two to maximize human learning.

II. TEACHING REWARD FUNCTIONS IN THE ZPD
Instructional material that is not too easy but also not too

difficult for a learner is said to belong in the zone of proximal
development (ZPD), often also referred to as the “Goldilocks”
zone [10, 26]. While teaching in the ZPD to maximize learning
and engagement is both intuitive and has been empirically
tested [20, 27], the same benefits can be reaped by testing

in the ZPD (e.g. Duolingo defines ZPD for their questions as
those that the user is 81% likely to get correctly [25]).

Key to teaching and testing reward functions in the ZPD is
counterfactual reasoning. When considering which demonstra-
tion or test to provide next, the robot must ask “How would the
human expect me to behave given their current beliefs?” The
key is to provide a behavior that differs from the human’s
counterfactual expectation just enough to be meaningfully
informative. Too small of a difference and the reconciliation in
the human’s mind is trivial, and too large of a difference and
the gap is irreconcilable in one shot. My primary research
contribution is selecting teaching demonstrations and tests
that lie in the ZPD to maximize human learning (and thus
the transparency) of robot reward functions and policies.

A. Scaffolding Demonstrations of Increasing Informativeness

Teaching in the ZPD requires accurately measuring and
accounting for a demonstration’s informativeness at revealing
the robot’s reward function to a human. Our key insight is that
a demonstration’s informativeness to a human is not intrinsic,
but is inherently tied to that human’s prior beliefs and their
subsequent interpretation of the demonstration [16–19].

Imagine that a human sees a delivery robot for the first time
as it take a two-action detour around one mud patch (Fig. 1a).
Because the robot does not take arbitrary actions and does not
go through the mud, human can infer using IRL-like reasoning
that this robot deems actions costly and that entering mud must
be at least twice as costly as an action. These two relations
can be represented as the two half-space constraints in Fig. 1b.
Note that this information is gained by comparing the robot’s
behavior against a counterfactual, i.e. an alternative behavior.

The robot thus hallucinates counterfactuals that the human
is likely to consider in new environments by rolling out reward
functions sampled from its running model of the human’s
beliefs [19]. For instance, when faced with the environment
in Fig. 1c, the human may think the robot would also detour
around two mud patches. And because it would instead go
through the mud in this case, the robot knows that this would
be an informative demonstration to provide, which would then
lowerbound the cost of the mud in the human’s mind (Fig. 1d).

And while it may be tempting to provide demonstrations
that yield the largest information gain, our first user study
suggests that information gain often correlates to the effort
required for the learner to process it [16]. In education, teach-
ers leverage the technique of scaffolding to provide additional
structure that helps a learner accomplish a task beyond their
current abilities [28]. We thus propose an algorithm to scaffold



Fig. 1. (a) A robot’s optimal demonstration (green) is shown in contrast to a suboptimal counterfactual alternative (red). (b) A model of the human’s
belief over the robot’s reward function following the demonstration in (a). (c) A robot’s optimal demonstration is shown in contrast to a counterfactual likely
considered by the human (corresponding to the three red belief samples in (b)). (d) A model of the human’s belief following the demonstration in (c).

demonstrations that incrementally increase in information gain
and simultaneously ease humans into learning [17].

Our second user study in which we taught a robot’s reward
function via pre-selected demonstrations, then tested the par-
ticipants’ ability to correctly predict robot behavior in unseen
scenarios showed that our algorithm for scaffolding demon-
strations increased performance on difficult tests [18]. How-
ever our method also decreased participants’ performance on
easy tests, suggesting that we perhaps challenged participants
too early without any feedback regarding their understanding.
We address the shortcomings of such open-loop teaching next.

B. Closing the Teaching Loop with Targeted Tests

An effective teacher engages the learner in a closed-loop
fashion, constantly updating their model of the learner’s be-
liefs based on the instruction provided and the learner’s test
responses, then updating the next lesson accordingly.

Each half-space constraint generated by IRL [21] can be
treated as a “knowledge concept” (KC) [15] that encapsulates
a characteristic of the reward function (e.g. mud is at least
twice as costly as an action) that the human has hopefully
internalized. However a model of human beliefs purely com-
prised of half-spaces cannot handle conflicts that arise when
the human incorrectly applies a KC during testing that was
assumed to be learned during teaching (as you cannot reconcile
two half-space constraints that point in opposite directions).

We thus move to a probabilistic human model in the form of
a particle filter [4]. Each particle represents a potential human
belief regarding the robot’s reward function, and particle
weights are updated in a Bayesian fashion based on constraints
conveyed through teaching demonstrations and test responses.
By leveraging a particle filter, our algorithm not only selects
demonstrations and tests in the ZPD that provide the right
amount of information, but also gracefully affords iterative
updates to the human model during teaching and testing.

We propose a closed-loop teaching algorithm that incremen-
tally teaches a set of related KCs (e.g. upper- and lowerbounds
on the mud cost) in a series of units. For each unit, it provides
scaffolded demonstrations, then presents the human with di-
agnostic tests that require understanding of the conveyed KCs.
For each missed KC, it provides a remedial demonstration that
teaches the KC again as simply as possible. Finally, it ends
each unit by continually testing the learner on this KC using
remedial tests and immediate corrective feedback until they get

it right. These remedial tests leverage the testing effect [24],
where leveraging tests not as assessment but teaching tools
leads to better learning over passively studying (e.g. seeing
more demonstrations). We are creating a user study to assess
the effectiveness of the proposed closed-loop teaching method.

III. FUTURE WORK

My long-term goal is for robots and humans to be able to
fluently identify and reconcile gaps in their understanding of
each other’s reward functions in high dimensional and complex
domains. Toward realizing this goal, I am next interested in
exploring the following three questions.

Teaching high dimensional reward functions: Our work
thus far has focused on conveying reward functions comprised
of three features, but robots must be able to reason about more
features to navigate many real-world scenarios. Interestingly,
humans struggle to reason about statistical correlations beyond
three variables [9] and yet operate fluently in many complex
domains. Humans are adept at causal reasoning, filtering out
irrelevant variables, and learning hierarchical abstractions (e.g.
force = mass·acc, work = force·dist). How can we use these
insights to factor, abstract, and decompose high dimensional
reward functions into lower dimensional embeddings that can
be easily and semantically communicated to a human?

Conceiving of demonstrations in a generative fashion: A
key insight of our work is that the diversity of environments
drives the diversity of demonstrations. Our work has focused
on grid world environments in which we can enumerate all
possible demonstrations and evaluate their informativeness.
But as we move to higher dimensions and continuous domains,
such enumeration and discriminative reasoning will no longer
be feasible. Instead, how can the robot take a generative ap-
proach in constructing a sufficiently expressive environment in
which it can demonstrate and convey the desired information?

Incorporating demonstration feedback into robot learn-
ing: Our work has explored a robot demonstrating its “opti-
mal” reward function to a human learner. However, I hypoth-
esize that providing demonstrations of a robot’s “suboptimal”
reward function during robot learning will provide human
teachers with feedback on current robot deficiencies and how
they be remedied. Given the information asymmetry in which
the robot and human each understands their own reward
function but has an imperfect model of the other’s [8], how
and when should the robot ask for a demonstration to learn or
provide a demonstration to clarify its current reward function?
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