
Improving the Transparency of Agent
Decision Making to Humans Using

Demonstrations

Michael S. Lee
CMU-RI-TR-24-05

February 28, 2024

The Robotics Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA
Thesis Committee:

Reid Simmons, Co-chair
Henny Admoni, Co-chair

David Held, Carnegie Mellon University
Scott Niekum, University of Massachusetts Amherst

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

Copyright © 2024 Michael S. Lee





Abstract

For intelligent agents (e.g. robots) to be seamlessly integrated into human
society, humans must be able to understand their decision making. For
example, the decision making of autonomous cars must be clear to the
engineers certifying their safety, passengers riding them, and nearby
drivers negotiating the road simultaneously. As an agent’s decision making
depends on its reward function to a great extent, we focus on teaching agent
reward functions to humans. Through reasoning that resembles inverse
reinforcement learning (IRL), humans naturally infer reward functions
that underlie demonstrations of decision-making. Thus agents can teach
their reward functions through demonstrations that are informative for
IRL. However, we critically note that IRL does not consider the difficulty
for a human to learn from each demonstration. Thus, this thesis proposes
to augment teaching for IRL with principles from the education literature
to provide demonstrations that belong in a human’s zone of proximal
development (ZPD) or their “Goldilocks” zone, i.e. demonstrations that
are not too easy nor too difficult given their current beliefs. This thesis
provides contributions in the following three areas.

We first consider the problem of teaching reward functions through select
demonstrations. Based on ZPD, we use scaffolding to convey demonstra-
tions that gradually increase in information gain and difficulty and ease
the human into learning. Importantly, we argue that a demonstration’s
information gain is not intrinsic to the demonstration itself but must be
conditioned on the human’s current beliefs. An informative demonstration
is accordingly one that meaningfully differs from the human’s expecta-
tions (i.e. counterfactuals) of what the agent will do given their current
understanding of the agent’s decision making.

We secondly consider the problem of testing how much the human has
learned from demonstrations, by asking humans to predict the agent’s
actions in new environments. We demonstrate two ways of measuring
the difficulty of a test for a human. The first is a gross measure of
difficulty that correlates test difficulty with the answer’s information gain
at revealing the agent’s reward function. The second is a more tailored
measure that conditions the difficulty of a test on the human’s current
beliefs of the reward function, estimating difficulty as the proportion of
the human’s beliefs that would yield the correct answer.
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Finally, we introduce a closed-loop teaching framework that brings together
teaching and testing. While informative teaching demonstrations may
be selected a priori, student learning may deviate from the preselected
curriculum in situ. Our teaching framework thus provides intermittent
tests and feedback in between groups of related demonstrations to support
tailored instruction in two ways. First, we are able to maintain a novel
particle filter model of human beliefs and provide demonstrations targeted
to the human’s current understanding. And second, we are able to leverage
tests not only as a tool for assessment but also for teaching, according to
the testing effect in the education literature.

Through various user studies, we find that our demonstrations targeted
for a human’s ZPD increase learning outcomes (e.g. the human’s ability
to predict the agent’s actions in new environments). However, we find
that learning gains can be associated with increased mental effort for
the human to update their beliefs, highlighting again the importance of
selecting demonstrations that differ just enough from human expectations
to be informative but not too difficult to understand. We also see that
such informative demonstrations often illuminate trade-offs inherent in
an agent’s reward function that may be subtle and difficult to predict a
priori, such as how far an agent is willing to detour around a potentially
dangerous terrain like mud. And finally, we find interesting interaction
effects between our various grid world domains and our results in our
later user studies, and we provide further insights on how domains may
be characterized in light of the observation that the best teaching method
is likely domain-dependent.
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1 Introduction

As intelligent agents (e.g. robots) become ubiquitous in our world, our capacity to
deploy, collaborate, and co-exist fluently with them as humans is contingent on our
ability to understand and predict their decision making. For example, an engineer
certifying the navigation policy of a ground delivery robot may ask, “Does the robot
understand all the terrains it might encounter well enough to successfully balance
efficiency and safety?” A human driver may wonder, “Will this autonomous car slightly
ahead of me try and merge into my heavily crowded lane?” And finally, new owners
of an autonomous vacuum may wonder, ““How much clutter will the robot tolerate
in an area before it steers clear to ensure it does not get stuck?” An incorrect model
of agent decision making may lead to premature deployments, unsafe interactions,
and inefficient use of such agents. It is thus imperative that agent decision making is
predictable and understandable, and thus transparent [23], to developers, collaborators,
and end-users of intelligent agents.

A critical way in which people communicate and comprehend each others’ decision-
making is through demonstrations. Humans will naturally observe agent behavior over
time and continuously refine their belief of the agent’s decision making in a process
called familiarization [19]. But as Huang et al. [35] note, this passive process can be
inefficient. Instead, we explicitly model both how humans learn and their current
belief over the agent’s decision making to actively select informative demonstrations
that help the human converge quickly to the agent’s true model. Predictably, the
effectiveness of such a method hinges in part on the accuracy of our models of human
learning and human beliefs. Cognitive science suggests that humans often model

1



1. Introduction

one another’s behavior as exactly or approximately maximizing a reward function
[38, 39, 62], which they can infer through reasoning resembling inverse reinforcement
learning (IRL) [10, 11, 37, 66].

Though standard IRL [66] (henceforth referred to simply as IRL for the sake
of brevity) is a good foundation for modeling human learning of potential reward
functions underlying demonstrations, it does not fully capture the multi-faceted
nature of human learning. One key aspect of human learning that it fails to consider
is the difficulty for a human to learn from a demonstration. Humans are limited in
their computational capacity [28] and may struggle to fully understand all of the
nuanced implications of a demonstration given their current knowledge. This relates
to the influential idea of Lev Vygotsky’s zone of proximal development (ZPD) [92],
which suggests that learning best occurs in the region between what a student can
accomplish on their own and what they can accomplish when they are supported with
the right level of assistance. ZPD is a general principle that has been leveraged in
analyzing and informing instruction across various knowledge-based learning subjects,
such as mathematics [25, 46, 86] and language [3, 42, 50], e.g. the popular language
learning app Duolingo defines ZPD for their questions as those that the user is 81%
likely to get correctly [24, 89]. ZPD can inform subject-agnostic learning environments
such as game-based learning [73] as well. This thesis builds on the key insight
that information gain and difficulty are often correlated with one another for human
learners. Thus, in contrast to the standard paradigm of providing humans with
demonstrations that simply maximize information gain [35, 47, 76], we hypothesize
that teaching in the ZPD (i.e. engaging at the right level of information gain and
difficulty conditioned on the human beliefs) will be informative to the human, and will
significantly improve human learning of agent decision making. In our hypothesis, we
take care to differentiate between information gain, which corresponds to the expected
reduction in human uncertainty over agent reward function, and informativeness,
which corresponds to the actual reduction in human uncertainty over agent reward
function.

Consider how an autonomous car may convey its reward function to a human. For
example, the car could ease in someone with no prior knowledge by first demonstrating
successful driving in nominal conditions that have moderate information gain but also
easy to comprehend (e.g. in open roads with minimal required turns or lane changes).

2



1. Introduction

Figure 1.1: This thesis aims to provide instruction at the right level of information
gain and difficulty for learners, i.e. in their zone of proximal development.

Then it could proceed to demonstrate more nuanced behavior, such as how it trades
off efficiency and caution in more challenging scenarios that have high information
gain but perhaps more difficult to comprehend (e.g. needing to make a quick lane
change to make an upcoming exit). This intuitive sequence of demonstrations carefully
balances the goal of communicating information with the difficulty of comprehension,
namely by gradually increasing in both information gain and difficulty.

In sequencing informative yet comprehensible demonstrations, it is important
to model the human’s prior knowledge and tailor the demonstrations accordingly.
For example, a “novice” would benefit from starter demonstrations that convey
introductory information that are comprehensible with no prior knowledge. However,
these same demonstrations would elicit boredom or frustration when shown to an
“expert”, who should instead directly be shown more nuanced behavior that further
refines their current knowledge.

To test the human’s understanding of the agent’s reward function after seeing
demonstrations, we can ask how they believe the agent would behave in unseen
environments. For example, we could test a human’s understanding of an autonomous
car’s reward function by asking how they believe the car would attempt to reach a
quickly approaching exit if they were one lane away, two lanes away, in light traffic,
or in heavy traffic, etc.

Finally, though a curriculum of informative demonstrations may be selected a
priori, student learning may deviate from the preselected curriculum in situ. Thus
testing is not only critical for assessing understanding after the full curriculum has
been shown, but also intermittently throughout the curriculum to ensure an up-
to-date model of human understanding and to provide tailored instruction. And
the testing effect [79] from the education literature predicts an increase in learning
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outcomes when a portion of the teaching budget is devoted to testing the student, i.e.
leveraging testing not only as a tool for assessment but also for teaching.

Thesis contributions

The following chapters provide algorithms for both teaching and testing with various
contributions (C1 - C9), with corresponding user studies to test our hypotheses.

Chapter 4 primarily concerns how to measure and account for the information
gain of a demonstration (at revealing the agent’s underlying reward function) for
teaching and testing.
C1. We posit that the information gain of a demonstration during teaching also

corresponds to the effort required for a human to extract that information.
Thus we propose an algorithm for scaffolding when conveying demonstrations
to a human, such that they gradually increase in information gain and difficulty
and ease the human into learning.

C2. We show that the information gain of a demonstration during teaching correlates
directly to the difficulty for a human to predict it in an unseen environment
during testing.

C3. We also note that human learners are likely also influenced by the visual features
and sequence in which demonstrations are conveyed. We show how promoting
the simplicity of visuals and affordance of a discernible pattern during teaching
can improve learning outcomes.

Chapter 5 primarily concerns how a human’s beliefs over the agent’s reward
function impact the measure of a demonstration’s information gain during teaching
and testing.
C4. We update our measure of a demonstration’s information gain by leveraging the

idea that a teaching demonstration that provides information gain is one that
differs meaningfully from the learner’s expectations (i.e. counterfactuals) of
what the agent will do given their current understanding of the agent’s decision
making. We provide an algorithm that scaffolds demonstrations accordingly
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which yields mixed results.

C5. We update our measure of test difficulty by conditioning it on a human’s current
beliefs and measuring how many of that individual’s beliefs would yield the
correct agent behavior, and show that it correlates with test performance.

C6. With the hypothesis that encouraging simplicity in not only the visuals but also
in reward features will assist in teaching, we propose a method for gradually
scaling up of the number of features conveyed to further ease information
transfer.

Chapter 6 explores augmenting a curriculum of informative demonstrations (se-
lected using the ideas from the prior chapters) with a closed feedback loop to provide
tailored instruction in real-time. And while this thesis focuses primarily on increas-
ing transparency via increasing predictability, this chapter also briefly discusses
understandability.

C7. We propose a closed-loop teaching framework based on insights from the
education literature that complements demonstrations with intermittent tests
and feedback and show that the framework reduces regret of human test
responses by 43% over an open-loop baseline.

C8. We develop a novel particle filter model of human beliefs that simultaneously
supports iterative updates and calibrated predictions of the counterfactuals
likely considered by the human for each subsequent demonstration that could
be provided.

C9. We finally contextualize our results in light of another common reward teaching
technique (direct numerical reward explanation) with an exploratory user study,
finding a strong interaction effect of domain on learning outcome.
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2 Related Work

2.1 Principles from Education and Cognitive Sci-
ence for Teaching Humans

The science of teaching and explaining concepts to humans is a multifaceted process
that has been studied extensively. Thus, we take inspiration from the education
and cognitive science literature on how humans provide explanations in informing
how an agent may teach a skill to a human learner so that the learner may correctly
reproduce that skill in new situations. We highlight below the major principles that
guide the teaching and testing frameworks developed in this thesis. For a list of just
a few of the many other educational principles and factors that influence student
learning, we refer the reader to [44] and [30] respectively.

Teaching

First, we focus on teaching in the zone of proximal development (ZPD) [92], which
suggests that learning best occurs in the region between what a student can accomplish
on their own and what they can accomplish when they are supported with the right
level of assistance. To do so, we combine the following principles (from the education
literature and cognitive science) to inform our approach.

Scaffolding is a well-established pedagogical technique in which a more knowl-
edgeable teacher assists a learner in accomplishing a task currently beyond the
learner’s abilities, e.g. by reducing the degrees of freedom of the problem and/or
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by demonstrating partial solutions to the task [96]. Noting the benefits seen by
automated scaffolding to date (e.g. [80]), we implement the first recommendation
made by [78] for software-based scaffolding, which is to reduce the complexity of
the learning problem through additional structure. Specifically, we incorporate this
technique when teaching a skill by providing demonstrations that sequentially increase
in information gain and difficulty.

In our work, we note that information gain is not an intrinsic quantity but is
dependent on the human’s current beliefs in two ways. First, the literature on how
humans explain to one another notes that “explanations are contrastive—they are
sought in response to particular counterfactual cases,” and that it is critical that the
learner’s counterfactuals matches the ones intended by the teacher [65]. Thus, we
select demonstrations that provide information with respect to the learner’s current
beliefs and the counterfactuals that they will likely consider. Second, Reiser [78]
suggests that scaffolding should sometimes challenge the learner by inducing cognitive
conflict. Thus, we not only wish to provide demonstrations that are supported by
the learner’s beliefs but demonstrations differ just enough from the human’s current
expectations to be meaningfully informative. Too small of a difference and the
reconciliation in the human’s mind is trivial, and too large of a difference and the
gap is irreconcilable in one shot.

Finally, though the information gain of a demonstration is a critical factor in
scaffolding, human learning is multi-faceted and is also influenced by other factors.
For example, studies on explanations preferred by humans indicate a bias toward
those that are simpler and have fewer causes [61]. Furthermore, [95] found that
explanations can be detrimental if they do not help the learner notice useful patterns
or even mislead them with false patterns. Together, these two works support the
idea that explanations should minimize distractions that potentially inspire false
correlations and instead highlight and reinforce the minimal set of causes. We thus
also optimize for simplicity and pattern discovery when selecting demonstrations
that naturally “explain” the agent’s underlying reward function.
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Testing

Effective scaffolding requires an accurate diagnosis of the learner’s current abilities to
provide the appropriate level of assistance throughout the teaching process [15]. A
common diagnostic method is presenting the learner with tests of varying difficulties
and assessing their understanding of a skill. Toward this, we propose a way to quantify
the difficulty of a test that specifically assesses the student’s ability to predict the
right behavior in a new situation.

Finally, the testing effect from the education literature [79] predicts an increase
in learning outcomes when a portion of the teaching budget is devoted to testing
the student. We thus leverage tests not only for assessment but also intermittently
during teaching. And when testing, immediate feedback on errors made in the test
responses can be leveraged to yield better learning outcomes [44].

2.2 Explainable Reinforcement Learning

The field of explainable reinforcement learning (RL) focuses on assisting humans
in understanding the decision making of RL agents. Recent surveys [64, 75, 94]
highlight a variety of approaches, such as approximating a black box RL policy via an
interpretable model (e.g. a decision tree [85]), using saliency maps to highlight features
of a state used for decision making [27], visualizing minimally different counterfactual
states that would have yielded a different action [67], and identification of critical
training points (e.g. for estimating Q-values [26]). The most recent survey by Milani
et al. [64] divides the work in this field into three categories of methods: feature
importance methods that highlight the features that influenced the agent’s decision
making, learning process and MDP methods that highlight relevant past experiences
or MDP components that lead to the agent’s current action, and policy-level methods
that convey the agent’s general long-term behavior. In this work, we contribute a
policy-level method that conveys an understanding of an agent’s overall behavior to a
human through representative demonstrations.
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2.2.1 Policy Summarization

The problem of policy summarization considers which states and actions (i.e. demon-
strations) should be conveyed to help a user obtain a global understanding of an
agent’s policy [6]. There are two primary approaches to this problem.

Heuristic-driven

The first relies on heuristics to evaluate the value of communicating certain agent
states and actions to humans. Huang et al. [34] considers conveying “critical states” in
which it is much worse to act randomly than optimally, measuring the entropy of the
agent’s action distribution for a policy trained using maximum-entropy reinforcement
learning. Amir and Amir [5] similarly measures a state’s “importance” for being
conveyed to a human as the difference between its best and worst Q-values. Finally,
this class of methods can be extended to comparing and contrasting the policies of
two agents [7].

Machine Teaching

We build on the second approach, which follows the machine teaching paradigm [104].
Given an assumed learning model of the student (e.g. IRL to learn a reward function),
the machine teaching objective is to select the minimal set of teaching examples (i.e.
demonstrations) that will help the learner arrive at a specific target model (e.g. a
policy). Though machine teaching was first applied to classification and regression
[60, 103], it has also recently been employed to convey reward functions from which
the corresponding policy can be reconstructed. Various methods for conveying a
reward function to humans are surveyed by Sanneman et al. [81] and we summarize
a couple of relevant works below.

Huang et al. [35] selected informative demonstrations for humans modeled to
employ approximate Bayesian IRL for recovering the reward. This technique requires
the true reward function to be within a candidate set of reward functions over which
to perform Bayesian inference, and computation scales linearly with the size of the
set. And as the candidate set of reward functions is not updated with additional
demonstrations (e.g. to remove unlikely original candidate reward functions and
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resample new candidates in a more likely region), this method is sensitive to the initial
sampling and perhaps leads to slower convergence to the robot’s reward function.
Cakmak and Lopes [13] instead focused on IRL learners and selected demonstrations
that maximally reduced uncertainty over all viable reward parameters, posed as a
volume removal problem. Brown and Niekum [12] improved this method (particularly
for high dimensions) by solving an equivalent set cover problem instead with their
Set Cover Optimal Teaching (SCOT) algorithm. However, SCOT is not explicitly
designed for human learners and this thesis builds on SCOT to address that gap.

And finally, though this field has traditionally focused on methods where the agent
directs human learning, recent methods explore giving control to the human. Qian
and Unhelkar [76] explore interactive policy summarization in which they explore
how allowing the student to request specific demonstrations impacts their learning
via a GUI. They find that a hybrid strategy of AI-selected and human-selected
demonstrations yields the best objective and subjective results; our proposed methods
could supply the former demonstrations in their framework. Finally, Amitai et al. [8]
develop a GUI-based interactive tool that allows a human to request video clips of the
agent acting in ways that satisfy the requested temporal properties of interest. Future
work could continue to look at leveraging other forms of communication between
the human and the agent, e.g. the agent supplying language-based summaries of its
behaviors to the human [20, 21] and the human being able to request demonstrations
via language as well.
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3 Approach

We seek to teach the reward functions underlying intelligent agents to humans by
accurately modeling human beliefs and leveraging teaching strategies to provide
instruction at the right level of informativeness and difficulty.

This teaching process can be characterized as a forward pass and a backward
pass that inform one another. The full forward pass involves first selecting good
teaching demonstrations (by considering how they will influence the learner’s beliefs),
conveying the demonstrations and updating a model of their beliefs accordingly, then
selecting tests that assess their true beliefs. The full backward pass involves assessing
the learner’s test responses, which provides insight into their current beliefs, and can
in turn help select the next teaching demonstration to provide. This teaching process
can be summarized by the block diagram in Fig. 3.1 and the rest of this chapter
will enumerate each of the key components of this diagram. First, the assumptions
that we make regarding the agent’s world model, reward function & policy, and how
the human learns from demonstrations. And second, the three key components of
teaching, modeling of human beliefs, and testing, with the educational and algorithmic
principles that inform each component as well as how they each influence one another.

As a running example in this section, we will consider the delivery domain in
which a robot is rewarded for efficiently delivering the package to the destination while
avoiding the mud if the detour is not too costly. Two sample teaching demonstrations
and a sample test in this domain are shown for reference (Fig. 3.2).
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Figure 3.1: An overview of the teaching process explored in this thesis.

Figure 3.2: Sample teaching demonstrations and a sample test in the delivery domain.
The green dotted line demonstrates the robot’s chosen path for delivering the package
to the destination, while avoiding mud if the detour is not too long. After seeing a
series of teaching demonstrations, the human is asked to demonstrate the robot’s path
for delivering a package in a new environment to test the human’s understanding of
the robot’s reward function.

3.1 Assumptions

World model: The agent’s environment is represented as an instance (indexed
by i) of a deterministic Markov decision process MDPi := (Si, A, Ti, γ, S0

i , R). As
the methods described here naturally generalize to MDPs with stochastic transition
functions and policies through the use of an expectation, we assume a deterministic
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MDP for simplicity. Si and A denote the state and action sets, Ti : Si × A × Si the
transition function, γ ∈ [0, 1] the discount factor, and S0

i the initial state distribution,
S : ⋃

i Si the union over the states of all related instances of MDPs, which we call a
domain (described below), and R : S × A → R the reward function that operates
over domains.

Let a domain refer to a collection of related MDPs that share A, R, γ but differ in
Si, Ti and S0

i . Take for example the delivery domain. Though MDPs in this domain
may vary in the number and locations of mud patches and subsequently offer a diverse
set of demonstrations (e.g. see the two distinct MDPs that underly the teaching
demonstrations in Fig. 3.2), they importantly share the same reward function R,
which we describe next.

Reward function & policy: A reward function R is a function that prescribes how
an agent ought to behave, rewarding certain states and actions and punishing others.
Ng and Russell [66] famously note that “The reward function, rather than the policy,
is the most succinct, robust, and transferable definition of a task,” and we focus in
this thesis on conveying an agent’s reward function to a human. Following prior work
[1], reward R is represented as a weighted linear combination of reward features ϕ:
R = w∗⊤ϕ(s, a, s′). Though the reward features can theoretically be nonlinear with
respect to states and actions and capture arbitrarily complex reward functions, the
methods proposed in this thesis were designed for domains with reward functions that
cleanly decompose into a set of disentangled, semantic features. Finally, also assume
that the human is aware of all aspects of an MDP (including the reward features)
but not the weights w∗.

The agent has an optimal policy π∗
i : Si → A that maps each state in an MDP

to the action that will optimize the reward in an infinite horizon. A sequence of
(si, a, s′

i) tuples obtained by following π∗ gives rise to an optimal trajectory (i.e. a
demonstration) ξ∗, where si, s′

i ∈ Si, a ∈ A.
Because instances of a domain share R, the various demonstrations all support

inference over the same w∗ through IRL. Thus, we overload the notation π∗ to refer
to any policy of a domain instance that optimizes a reward with w∗. Furthermore,
while a demonstration strictly consists of both an optimal trajectory ξ∗ (obtained by
following π∗) and the corresponding MDP (minus w∗), we will refer to a demonstration
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only by ξ∗ in this thesis for notational simplicity.
We emphasize that the agent has a separate policy for each environment (rep-

resented as an MDP) and our problem formulation focuses on teaching the agent’s
decision making, i.e. how the agent would generate its policy for any environment
given w∗, rather than a single policy.

Human learning style: Cognitive science suggests that humans also often model
one another’s behavior as exactly or approximately maximizing a reward function
[38, 39, 62]. And given demonstrations of behavior, they can infer the underlying
reward function through reasoning resembling inverse reinforcement learning (IRL)
[10, 11, 37, 66]. Thus, we assume in this work that humans will employ standard IRL
[66] to infer an agent’s reward function from demonstrations of its policy.

And while an understanding of the reward function is arguably necessary for an
understanding of the agent’s decision making that generalizes across environments, it
may not be sufficient. For example, an agent could simply convey w∗ explicitly to a
human instead of having the human infer w∗ given demonstrations. However, it can be
nontrivial for humans to map precise numerical reward weights to the corresponding
optimal behavior through reasoning resembling planning [84, 98], especially if there
is a large number of reward features or the reward features interact in complex ways.
Thus, providing demonstrations that inherently carry information regarding w∗ and
directly conveying the optimal behavior can be more a effective teaching method for
human learners. We in fact verify this through a user study in which people struggle
to utilize explicitly provided w∗ to predict agent behavior in our domains of interest
(see Section 6.5).

Finally, we briefly note that another common learning style is imitation learning1

(IL) [47]. This models humans as learning the optimal behavior directly from demon-
strations (as opposed to through an intermediate reward function like IRL) and also
has a basis in neuroscience [17]. In this work, we focus only on IRL-based learning
and leave incorporating IL (e.g. determining which style the human is currently
employing and catering to it accordingly) for future work.

1Note that the term ‘behavior cloning’ is sometimes used instead to refer to the process of directly
learning the optimal behavior. Accordingly, ‘imitation learning’ is sometimes used to refer to the
broad class of techniques that learn optimal behavior from demonstrations, encompassing both
behavior cloning and IRL [68].
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3.2 Teaching Components

Here, we introduce the teaching components and concepts that are relevant to our
system (shown in Fig. 3.1 as a block diagram).

Teaching: This component considers which demonstrations of the agent’s optimal
behavior to provide to best teach the agent’s reward function to a human. In
order to tailor the demonstrations to human learners, we utilize techniques from
social constructivist learning theory such as scaffolding [96] (which serves as the
foundational method, Section 4.2), insights from cognitive science on how humans
provide explanations that optimize for simplicity and pattern matching [61, 95]
(Section 4.2) and accounting for the counterfactuals likely considered by the human
[65] (Section 5.2). We finally incorporate demonstrations in the form of feedback [44]
to tests (Section 6.1).

Teaching importantly informs the model of the human’s beliefs (i.e. what infor-
mation each demonstration that is conveyed to the human provides regarding the
agent’s reward function). By modeling expected change in human beliefs due to
each demonstration, and scaffolding demonstrations such that they do not change
the human’s beliefs too drastically at each step, we aim to teach in an incrementally
informative yet comprehensible manner.

Modeling of human beliefs: We maintain an up-to-date model of the human’s
expected beliefs of the agent’s reward function given a series of demonstrations and
tests. We constrain the human’s expected beliefs on w∗ to lie on the surface of the
N − 1 sphere where N = |w∗|, the dimensionality of the weight vector. As a reward
function will yield the same policy even when multiplied by an arbitrary scale factor,
we require ||w∗||2 = 1 to bypass both the subsequent scale invariance of IRL and the
degenerate all-zero reward function without loss of generality. See Fig. 4.1 for an
example human belief model when |w∗| = 3.

To translate a set of demonstrations and tests into a corresponding model of
human belief, we use inverse reinforcement learning (IRL). In Chapters 4 and 5, we
assume an exact IRL model [66] that makes precise, and efficient inference on the
underlying reward function through constraints that remove sets of candidate reward
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functions.
However, research has shown that humans often employ more approximate reason-

ing in inferring reward functions from demonstrations [35, 90]. Though it may be less
computationally efficient, this more gracefully accounts for the inherent uncertainty
in the useful but imperfect model of humans as IRL learners, and better supports
iterative updates through continual teaching and testing. We thus develop a particle
filter-based model of human beliefs that can be updated using approximate IRL
(Section 6.1).

A human’s current beliefs will inform how they will interpret a demonstration,
and thus also inform how much information a demonstration may convey to them
(Section 5.2). A human’s currently beliefs will also inform how difficult a test will
likely be to a human, which is addressed next.

Testing: After providing a number of instructive examples selected to teach a
concept, a natural way to assess student learning is to test them. In this work, we do
not ask the human learner for the agent’s exact reward function in terms of reward
weights, as humans are likely approximate in their reasoning as noted previously.
Instead, we ask the human to predict the agent’s behavior in unseen environments,
querying the human’s understanding of the agent’s policy as a proxy. Defining a test
as a prediction of the agent’s behavior, we provide two novel measures of how difficult
a test will likely be for a human to answer correctly in Sections 4.2 and 5.2. The
assigned difficulty of a test and the correctness of the human’s corresponding answer
provide an approximate measure of the accuracy of their beliefs regarding the agent’s
reward function.

Finally, the testing effect [79] is a well-established idea in the education literature
that suggests that tests are not only useful for assessing but also in learning (e.g. by
strengthening retrieval from memory). Thus, we integrate intermittent testing in our
closed-loop teaching framework developed in Section 6.1, and leverage tests not only
for assessment but also for teaching.

A human’s response to a test can importantly be used to further inform and
update our model of the human’s beliefs, which we explore in Section 6.1.
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4
Incorporating

Scaffolding and Visual
Saliency in

Demonstration
Selection

This chapter primarily explores how to select a sequence of demonstrations that
will effectively teach a robot’s reward function to a human. First, we leverage the
educational principle of scaffolding to select demonstrations that gradually increase
in information gain and difficulty and ease the human into learning. Second, we
note cognitive science literature that suggests humans favor simple explanations that
follow a discernible pattern [61, 95] and also optimize for visual simplicity and pattern
discovery when selecting demonstrations, which we refer to jointly as visual saliency.
And toward effective testing of the learner’s understanding, we finally show that
the expected difficulty for a human to predict an agent’s particular behavior as a
test inversely correlates to that behavior’s expected information gain as a potential
teaching demonstration1.

We assess our methods with user studies and find that our measure of test difficulty
corresponds well with human performance and confidence, and also find that favoring
visual simplicity and pattern discovery increases human performance on difficult tests.
However, we did not find a strong effect for our method of scaffolding, revealing likely
shortcomings in our measure of demonstration information gain to a human, which
we address in Chapter 5.

1The contents of this chapter were published in [51].
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4.1 Problem formulation:

The problem of selecting informative demonstrations for teaching the robot’s reward
function and subsequent policy can be formulated as an instance of machine teaching.

Machine teaching for policies: As formalized by Lage et al. [47], machine
teaching for policies seeks to convey a set of demonstrations D of size n (i.e. the
allotted budget for teaching set) that will maximize the similarity ρ between π∗ and
the policy π̂ recovered using a model M on D

argmax
D⊆Ξ

ρ(π̂(D, M), π∗) s.t. |D| = n (4.1)

where Ξ is the set of all optimal demonstrations of π∗ in a domain. We assume that
the M employed by humans to approximate the underlying w∗ is IRL. Once w∗ (and
the subsequent reward function) is approximated, we assume that human learners
are able to arrive at π∗ through planning on the underlying MDP.

Thus, the teaching objective reduces to effectively conveying w∗ through well-
selected demonstrations. In order to quantify the information a demonstration
provides on w∗, we leverage the idea of behavior equivalence classes.

Behavior equivalence class: The behavior equivalence class (BEC) of π is the set
of (viable) reward weights under which π is still optimal. The larger the BEC(π) is,
the greater the potential uncertainty over w∗ that is underlying the robot’s optimal
policy.

BEC(π) =
{
w ∈ Rl | π optimal w.r.t. R = w⊤ϕ(s, a, s′)

}
(4.2)

The BEC(π) can be calculated as the intersection of the following half-space constraints
generated by the standard IRL equation [66]

w⊤
(
µ(s,a∗)

π − µ(s,b)
π

)
≥ 0

∀a∗ ∈ arg max
a∈A

Q∗ (s, a) , b ∈ A, s ∈ S
(4.3)

where µ(s,c)
π = E [∑∞

t=0 γtϕ (st) | π, s0 = s, a0 = c] is the vector of expected reward
feature counts accrued from taking action c in s, then following π after, and Q∗(s, a)
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Figure 4.1: (a): A demonstration D of an optimal policy in the delivery domain.
Agent aims to deliver the package to the destination while avoiding walls and mud if
the detour is not too costly.
(b): The demonstration can be translated into a set of half-space constraints (the red
and blue half-spaces) on the possible underlying reward function using standard IRL
(Eq. 4.4). The set of reward functions that obey the constraints (which includes the
agent’s true reward function) corresponds to BEC(D|π), and can be used to model
the human’s subsequent belief over the agent’s reward function.

refers to the optimal Q-value in a state and a possible action [93].

Brown et al. [12] proved that the BEC(D|π) of a set of demonstrations D of a
policy π can be formulated similarly as the intersection of the following half-spaces

w⊤
(
µ(s,a∗)

π − µ(s,b)
π

)
≥ 0, ∀(s, a) ∈ D, b ∈ A. (4.4)

Using the Eq. 4.4, every demonstration can be translated into a set of constraints on
the viable reward weights. Whereas Eq. 4.3 generates constraints from rollouts from
all states that comprise the state space of a domain, Eq. 4.4 generates constraints
from only rollouts that start from states that comprise the demonstration of interest.

To gain an intuition for how IRL translates a demonstration into a set of half-space
constraints on the possible underlying reward function, consider again the delivery
domain where the agent is tasked with delivering the package to the destination
while generally taking the fewest number of actions, avoiding mud, and recharging
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its battery at a recharge station (not shown in Fig. 4.1) if possible2. The domain
accordingly has three binary reward features ϕ = [traversed mud, battery recharged,
action taken] and w∗ ∝ [−3, 3.5, −1], where w∗ is shown as proportional to the vector
because of the requirement for ||w∗||2 = 1 to bypass both the scale invariance of IRL
and the degenerate all-zero reward function (as previously noted in Section 3.2). Thus,
with no prior information, the expected space of reward weights in the human’s mind
for the delivery domain is the surface of the 2-sphere. Imagine that the robot provides
the demonstration in Fig. 4.1a, which yields the constraints in Fig. 4.1b that leaves
only the sliver of the 2-sphere that contains the robot’s true reward weights. The
red constraint plane in Fig. 4.1b intuitively indicates that w∗

2 ≤ 0, since no arbitrary
additional actions were taken in delivering the package, and jointly with the blue
constraint plane indicates that w∗

0 ≤ 0 and w∗
0 ≤ 2w∗

2, since two actions were taken
to detour around the mud. Note that because this demonstration environment does
not have a recharge station that could be visited or not (e.g. if it is too far away),
the constraints do not convey any information on the ‘battery recharged’ weight in
Fig. 4.1b. Additional demonstrations that contain a recharge station will be needed
accordingly to convey the recharge weight.

Importantly, the surface area of the N − 1 sphere that remains after incorporating
a demonstration’s constraints can be used as a measure of its information gain.
The smaller the area, the fewer viable reward weights remain, and the higher the
information gain. However, we note that we must also consider the difficulty of human
learners to extract the information from demonstrations, which we address next.

4.2 Methods

Scaffolding

The SCOT algorithm [12] efficiently selects the minimum number of demonstrations
that results in the smallest BEC area for a pure IRL learner. Such a learner is
assumed to fully grasp these few highly nuanced examples that delicately straddle

2Note that this version of the delivery domain is slightly different from the one used in the
original paper [51] and in the experiments in this chapter. A change in one of the reward features
and the use of the L2 norm on the weights rather than the L1 norm to accommodate IRL’s scale
invariance allows for consistency with subsequent chapters in this thesis.
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decision-making boundaries and find any other demonstrations redundant. However,
we posit that the BEC area of a demonstration not only inversely corresponds to the
amount of information it contains about the possible values of w∗, but also inversely
corresponds to the effort required for a human to extract that information. Thus
humans will likely benefit from additional scaffolded examples that ease them in and
incrementally relax the degrees of freedom of the learning problem.

We develop a scaffolding method for a learner without any prior knowledge,
outlined as follows. First, obtain the SCOT demonstrations that contain the maximum
information on w∗. To do so, the robot first translates all possible demonstrations of its
policy in a domain into a corresponding set of BEC constraints. After taking a union
of these constraints, redundant constraints are removed using linear programming
[71]. These non-redundant constraints together form the minimal representation of
BEC(π∗). SCOT now iteratively runs through all possible demonstrations again and
greedily adds to the teaching set D the demonstration that covers as many of the
remaining constraints in BEC(π∗), until all constraints are covered. These steps for
obtaining SCOT demonstrations correspond to lines 2-14, as part of our overarching
scaffolding method detailed in Algorithm 1

If space remains in the teaching budget n for additional demonstrations after
selecting j SCOT demonstrations, begin scaffolding by sorting all possible demonstra-
tions in a domain according to their BEC areas. Then cluster them using k-means
into 2(n − j) clusters to ensure that no two consecutive demonstrations are nearly
identical in BEC area (see Fig. 4.2). Randomly draw m candidate demonstrations
from every other cluster, where stochasticity in demonstration selection increases as
m decreases; in the limit, candidate demonstration selection will be deterministic
when m is set to the size of the cluster. We randomly drew one-sixth of the possible
demonstrations from each cluster for some stochasticity (e.g. to avoid showing a
special type demonstration early on that would ‘exit’ rather than complete the task,
which will be further explained in the discussion section). Finally from these pools of
candidate demonstrations, select the ones that best optimize visuals for the teaching
set D (as described in the next section) to show in addition to the SCOT demonstra-
tions. See lines 17-22 in Algorithm 1. In our experiments, the algorithm divided the
BEC areas into 6 clusters, considering every other cluster (starting with the second
cluster) to correspond to “low”, “medium”, and “high” information respectively and
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m was set as a quarter of the number of demonstrations in the cluster.

Figure 4.2: Histogram of BEC areas of the 25,600 possible demonstrations in the
delivery domain, where the agent, passenger, mud, and recharge station locations are
allowed to vary. Cluster centers returned by k-means (for k = 6) are shown as red
circles along the x-axis. Demonstrations from every other cluster are selected and
shown in order of largest to smallest BEC area for scaffolded machine teaching.

Visual Saliency

Studies on explanations preferred by humans indicate a bias toward those that are
simpler and have fewer causes [61]. Furthermore, [95] found that explanations can be
detrimental if they do not help the learner notice useful patterns or even mislead them
with false patterns. Together, these two works support the idea that explanations
should minimize distractions that potentially inspire false correlations and instead
highlight and reinforce the minimal set of causes. We thus also optimize for simplicity
and pattern discovery when selecting demonstrations that naturally explain the
underlying reward function.

Though the BEC area of a demonstration provides an unbiased, quantitative
measure of the information transferred to a pure IRL learner, human learners are
likely also influenced by the medium of the demonstration, e.g. visuals, and the
simplicity and patterns it affords. For example, visible differences between sequential
demonstrations can highlight relevant aspects, while visual clutter that does not
actually influence the robot’s behavior (e.g. extraneous mud not in the path of the
delivery robot) may distract or even mislead the human.
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We perform a greedy sequential optimization for visual pattern discovery and then
for visual simplicity, which we collectively term visual saliency. We first encourage
pattern matching by considering candidates from different BEC clusters (which often
exhibit qualitatively different behaviors) that are most visually similar to the previous
demonstration. We measure the visual similarity of two states by defining a binary
hash function over a domain’s state space (such that each non-zero value in the state
hash corresponds to the presence of a consistent visual feature, like a mud patch at a
particular location) and calculating the edit distance between the two corresponding
binary state hashes. The aim is to highlight a change in environment (e.g. a new
mud patch) that caused the change in behavior (e.g. robot takes a detour) while
keeping all other elements constant. We then optimize for simplicity. A measure
of visual simplicity is manually defined for each domain (e.g. the number of mud
patches in the delivery domain), and out of the scaffolding candidates, the visually
simplest demonstration is selected.

The proposed methods for scaffolding and visual saliency come together in Algo-
rithm 13. Since the highest information SCOT demonstrations are selected first then
demonstrations are selected via k-means clustering from high to low information, the
algorithm concludes by reversing the demonstration list to order the demonstrations
from easiest to hardest (line 29). An example of a sequence of demonstrations that
exhibits scaffolding, simplicity, and pattern discovery are shown in Fig. 4.3.

Testing

An optimal trajectory’s BEC area theoretically correlates to its information gain as a
teaching demonstration. The smaller the area, the less uncertainty there is regarding
the value of w∗.

We propose a complementary and novel idea: that the BEC area can be inverted as
a measure of a trajectory’s difficulty as a question during testing, i.e. when a human
is asked to predict the robot’s trajectory in a new situation. Intuitively, a large BEC
area indicates that there are many viable reward weights for a demonstration, and
thus the human does not need to precisely understand w∗ to correctly predict the

3An implementation is available at https://github.com/SUCCESS-MURI/machine-teaching-
human-IRL.
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Algorithm 1 Machine Teaching for Human Learners
Require: π∗: optimal policy, D: set of all MDPs belonging to a domain, Ξ: all

possible demonstrations of π∗ in a domain, n: teaching budget, m: cluster pool
size

1: // Obtain SCOT demos
2: U = ∅
3: for MDP ∈ D do
4: // Obtain BEC(π∗) using Eq. 4.3 on each MDP comprising a domain. N̂[·]

// extracts unit normal vectors corresponding to a set of half-space constraints.
5: U = U ∪ N̂[BEC(π∗)]
6: end for
7: U = removeRedundantConstraints(U) ▷ See [71]
8: D = [ ], C = ∅
9: while |U \ C| ≠ 0 do ▷ \ denotes set subtraction

10: ξ∗ = argmax
ξ∈Ξ

|N̂[BEC(ξ|π∗)] ∩ (U \ C)| ▷ Eq. 4.4

11: D.append(ξ∗)
12: C = C ∪ N̂[BEC(ξ|π∗)]
13: Ξ = Ξ \ ξ∗

14: end while
15: // Select candidates to fill the teaching budget via scaffolding
16: if |D| < n then
17: Dcand = ∅ ▷ Set of sets
18: Ξsorted = sortByIncreasingBECArea(Ξ)
19: Ξcluster = kMeans

(
Ξsorted, 2(n − |D|)

)
20: for

(
i = 1, i = 2(n − |D|), i += 2

)
do

21: Dcand = Dcand ∪ {sampleTraj(m, Ξcluster[i])}
22: end for
23: // Downselect from candidates based on visuals
24: for Dcand ∈ Dcand do
25: Dprelim = maximizeVisualSimilarity(Dcand, D)
26: ξ∗ = maximizeVisualSimplicity(Dprelim)
27: D.append(ξ∗)
28: end for
29: D = reverse(D) ▷ Order demonstrations from easiest to hardest
30: end if
31: return D ▷ Final demonstration set to show human
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Figure 4.3: Demonstrations hand-picked to illustrate ideal scaffolding, simplicity, and
pattern discovery. We scaffold by showing demonstrations that incrementally decrease
in BEC area (which appears to correlate inversely with information gain and difficulty).
Simplicity is encouraged by minimizing visual clutter (e.g. unnecessary mud patches).
Pattern discovery is encouraged by holding the agent and passenger locations constant
while highlighting the single additional mud patch between demonstrations that
changes the optimal behavior.

robot’s trajectory. We can also use this measure to select tests of varying difficulties
to assess the human’s final understanding of w∗ and subsequently π∗ after having
seen a set of teaching demonstrations.

4.3 User Studies

We ran two online user studies that involved participants watching demonstrations of
a 2D agent’s policy and predicting the optimal trajectory in new test environments4.
The first study explored how BEC area of provided demonstrations correlates with a
human’s subsequent understanding of the underlying policy, while the second study
explored how incorporating human learning strategies into demonstration selection
impacts a human’s understanding of the underlying policy.

Domains

Three simple grid world domains were designed for the two studies (see Fig. 4.4).
The available actions were {up, down, left, right, pick up, drop, exit}. Each domain

4Code for the user studies, videos of teaching and testing demonstrations, and the collected data
are available at https://github.com/SUCCESS-MURI/psiturk-machine-teaching.
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Figure 4.4: Three domains were presented in the user study, each with a different set
of reward weights to infer from demonstrations using inverse reinforcement learning.
(a): delivery, (b): two-goal, (c): skateboard

consisted of one shared reward feature of unit action cost, and two unique reward
features as follows.

Delivery domain. The agent is rewarded for bringing a package to the destination
and penalized for moving into mud.

Two-goal domain. The agent is rewarded for reaching one of two goals, with
each goal having a different reward.

Skateboard domain. The agent is rewarded for reaching the goal. It is penalized
less per action if it has picked up a skateboard (i.e. riding a skateboard is less costly
than walking).

To convey an upper bound on the positive reward weight, the agent exited from
the game immediately if it encountered an environment where working toward the
positive reward would yield a lower overall reward (e.g. too much mud along its path).
The semantics of each domain were masked with basic geometric shapes and colors
to prevent biasing human learners with priors. All domains were implemented using
the simple rl framework [2].

Study Design

The first and second user studies (US1 and US2, respectively) used the same domains,
procedures, and measures, though they differed in which variable was manipulated.

US1 explored how BEC area of demonstrations correlates with a human’s un-
derstanding of the underlying policy. Thus, the between-subjects variable was
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information class, with three levels: low, medium, and maximum (i.e. SCOT). The
low and medium information demonstrations were selected from the 5th and 3rd
BEC clusters respectively (see Fig. 4.2). When selecting multiple demonstrations
from a single cluster, we optimized for visual simplicity and dissimilarity as coverage
of demonstrations has been shown to improve human learning [5, 35]5. Thus, each
person only saw low, medium, or maximum (i.e. SCOT) information demonstrations
across each domain, where the number of demonstrations shown in each domain was
set to equal the number of SCOT demonstrations for fair comparison (2 for delivery
and skateboard, 3 for two-goal).

US2 explored how incorporating human learning strategies impacts a human’s
understanding of the underlying policy. Specifically, it examined how the presence and
direction of scaffolding, and optimization of visuals, would impact the human’s test
performance. The between-subjects variables were scaffolding class (none, forward,
and backward), and visual saliency (positive and negative). For scaffolding class,
forward scaffolding showed demonstrations according to Algorithm 1, backward
scaffolding showed forward scaffolding’s demonstrations in reverse, and no scaffolding
showed all high information gain examples from the 1st BEC cluster (Fig. 4.2). Five
demonstrations were shown for each domain.

Both US1 and US2 had two additional within-subject variables: domain (delivery,
two-goal, and skateboard, described above and test difficulty (low, medium, and
high, determined by the BEC area of the test). As such, each participant was shown
teaching demonstrations in all three domains and was tested with tests spanning all
three difficulty levels (in randomized order).

For both user studies, participants first completed a series of tutorials that
introduced them to the mechanics of the domains they would encounter. In the
tutorials, participants learned that the agent would be rewarded or penalized according
to key events (i.e. reward features) specific to each domain. They were then asked to
generate a few predetermined trajectories in a practice domain with a live reward
counter to familiarize themselves with the keyboard controls and a practice reward
function. Finally, participants entered the main user study and completed a single

5Note that Algorithm 1 already achieves coverage by scaffolding demonstrations across different
BEC clusters and thus benefits instead from optimization of visual similarity amongst consecutive
demonstrations that highlights changes in environments that lead to different behaviors.
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trial in each of the delivery, two-goal, and skateboard domains. Each trial involved a
teaching portion and a test portion. In the teaching portion, participants watched
videos of optimal trajectories that maximized reward in that domain, then answered
subjective questions about the demonstrations (M2-M4, see below). In the subsequent
test portion, participants were given six new test environments and asked to provide
the optimal trajectory. The tests always included two low, two medium, and two high
difficulty environments shown in random order. For each of the tests, participants
also provided their confidence in their response (M5). The teaching videos for each
condition were pulled from a filtered pool of 3 exemplary sets of demonstrations
proposed by Algorithm 1 to control for bias in the results (e.g. to remove the confound
of showing demonstrations that simply ‘exit’ early on in the teaching set, which will
be explained in the discussion section). The tests were likewise pulled from a filtered
pool of 3 exemplary sets of demonstrations for each of the low, medium, and high
difficulty test conditions. Please refer to the scaffolding subsection in Section 4.5 for
additional discussion on how filtering was employed.

Finally, though the methods described in this chapter are designed for a human
with no prior knowledge regarding any of the weights, the agent in our user studies
assumed that the human was aware of the step cost and only needed to learn the
relationship between the remaining two weights in each domain. This simplified
the problem at the expense of a less accurate human model and measure of a
demonstration’s information gain via BEC area. However, the effect was likely
mitigated in part by the clustering and sampling in Algorithm 1, which only makes
use of coarse BEC areas.

Hypotheses

H1: The BEC area of a demonstration correlates 1) inversely to the expected difficulty
for a human to correctly predict that exact demonstration during testing, and 2)
directly to their confidence in that prediction.
H2: The BEC area of a demonstration also correlates 1) inversely to the information
transferred to a human during teaching and thus inversely to the subsequent human
test performance as measured by a suite of test, and 2) leads to better qualitative
assessments on informativeness, mental effort, or puzzlement.
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H3: Forward scaffolding (demonstrations shown in increasing difficulty) will result
in better qualitative assessments of the teaching set and better participant test
performance over no scaffolding (only high difficulty demonstrations shown) and
backward scaffolding (demonstrations shown in decreasing difficulty), in that order.
H4: Positive visual saliency will result in better qualitative assessments of the
teaching set and better test performance over negative visual saliency (with positive
and negative visual saliency corresponding to the maximization and minimization,
respectively, of both simplicity and pattern discovery).

The two user studies jointly tested H1. The first study tested H2 and the second
study tested H3 and H4.

Measures

The following objective and subjective measures were recorded to evaluate the afore-
mentioned hypotheses. The Likert scales corresponding to M2-M4 were provided
after all of the demonstrations but before the tests. The Likert scale corresponding
to M5 was provided after each test.
M1. Optimal response: For each test, whether the participant’s trajectory received
the optimal reward was recorded.
M2. Informativeness rating: 5-point Likert scale with prompt “How informative
were these demonstrations in understanding how to score well in this game?”
M3. Mental effort rating: 5-point Likert scale with prompt “How much mental
effort was required to process these demonstrations?”
M4. Puzzlement rating: 5-point Likert scale with prompt “How puzzled were you
by these demonstrations?”
M5. Confidence rating: 5-point Likert scale with prompt “How confident are you
that you obtained the optimal score?”

4.4 Results

162 participants were recruited using Prolific [70] for the two user studies. Each
of the nine possible between-subjects conditions across the two user studies was
randomly assigned 18 participants (such that US1 and US2 contained 54 and 108
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participants respectively), and the order of the domains presented to each participant
was counterbalanced. Participants’ ages for US1 ranged from 18 to 57 (M = 25.07,
SD = 8.37). Participants reported gender to be roughly 74% male, 22% female, 2%
non-binary, and 2% preferred to not disclose. Participants’ ages for US2 ranged from
18 to 52 (M = 26.57, SD = 8.33). Participants reported gender to be roughly 64%
male, 34% female, 2% non-binary, and 0% preferred to not disclose. The recruitment
process and studies was approved by Carnegie Mellon University’s Institutional
Review Board.

The three domains were designed to vary in the difficulty of their respective
optimal trajectories. We calculated an intraclass coefficient (ICC) based on a mean-
rating (k = 3), consistency-based, 2-way mixed effects model [45] to evaluate the
consistency of each participant’s performance across domains. A low ICC value of
0.37 (p < .001) indicated that performance in fact varied considerably across domains
for each participant. We subsequently average each participant’s scores across the
domains in all following analyses, potentially yielding results that are representative
of domains with a range of difficulties.

H1: We combine the test responses from both user studies as they share the
same pool of tests. A one-way repeated measures ANOVA revealed a statistically
significant difference in the percentage of optimal responses (M1) across test difficulty
(F (2, 322) = 275.35, p < .001). Post-hoc pairwise Tukey analyses further revealed
significant differences between each of the three groups, with the percentage of optimal
responses dropping from low (M = 0.89), to medium (M = 0.68), to high (M = 0.36)
test difficulties (p < .001 in all cases).

Spearman’s rank-order correlation further showed a significant inverse correlation
between test difficulty and confidence (M5, rs = −.40, p < .001, N = 486). See Fig.
4.5 for the raw confidence data.

Objective and subjective results both support H1, that BEC area can indeed be used
as a measure of difficulty for testing. We thus proceed with the rest of the analyses
with “test difficulty” as a validated independent variable.

H2: A two-way mixed ANOVA on percentage of optimal responses (M1) did not
reveal a significant effect of information class of the teaching set (F (2, 51) = 1.23, p =
.30), though test difficulty had a significant effect consistent with the H1 analysis
(F (2, 102) = 118.58, p < .001). There was no interaction between information class
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Figure 4.5: Participants were significantly more confident of their responses as test
difficulty decreased.

Figure 4.6: The information class of demonstrations only significantly influences their
perceived informativeness, ironically decreasing from low to maximum information
class. This suggests that a demonstration’s intrinsic information content (as measured
by its BEC area) does not always correlate with the information transferred to human
learners. No significant effects were found between information class and mental effort
or puzzlement.
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Figure 4.7: Though the three scaffolding conditions perform similarly in aggregate
across all tests, ‘no scaffolding’ significantly increases performance for high difficulty
tests.

and test difficulty (F (4, 102) = 0.67, p = .61).
Spearman’s correlation test only found a significant negative correlation between

information class and perceived informativeness (M2, rs = −0.28, p = .04, N = 54).
Neither mental effort (M3, p = .08) nor puzzlement (M4, p = .36) were found to have
significant correlations with information class. See Fig. 4.6 for the raw subjective
ratings.

The data failed to support H2. The data suggest that IRL alone is indeed an
imperfect model of human learning, motivating the use of human teaching techniques
to better accommodate human learners.

H3: A two-way mixed ANOVA on percentage of optimal responses (M1) revealed
a significant interaction effect between scaffolding and test difficulty (F (4, 210) =
2.79, p = .03). Tukey analyses showed that no scaffolding (M = 0.46) yielded
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significantly better test performance than forward scaffolding (M = 0.34) for high
difficulty tests (p = .05). Though not statistically significant, a trend of forward
and backward scaffolding outperforming no scaffolding on low (M = 0.89, 0.89, 0.85
respectively) and medium difficulty tests (M = 0.69, 0.69, 0.62 respectively) can be
observed as well (see Fig. 4.7).

Seeing the strong effect of domain on the results of the user studies in Chapter
6, we explore whether the significant effect noted above was also driven by domain.
Indeed, a t-test revealed that only in the skateboard domain did no scaffolding
(M = 0.61) yield significantly higher learning outcomes over forward scaffolding
(M = 0.39) for high difficulty tests at Bonferroni adjusted p = 0.04.

A two-way mixed ANOVA did not reveal a significant effect from scaffold-
ing (F (2, 105) = 0.02, p = .98) but did find a significant effect for test difficulty
(F (2, 210) = 167.63, p < .001) on percentage of optimal responses (M1) as hypothe-
sized.

A Kruskal-Wallis test did not find differences between the informativeness (H(2) =
5.18, p = .07), mental effort (H(2) = 1.16, p = .56), or puzzlement (H(2) = 0.59, p =
.74) ratings (M2–M4) of differently scaffolded teaching sets.

The data largely failed to support H3. Forward and backward scaffolding sur-
prisingly led to nearly identical test performance. Though no scaffolding performed
similarly overall, it yielded a significant increase in performance specifically for high
difficulty tests. The subjective measures did not indicate any clear relationships.

H4: A two-way mixed ANOVA on percentage of optimal responses (M1) revealed
significant effects of test difficulty (F (2, 212) = 169.21, p < .001) and an interaction
effect between optimized visuals and test difficulty (F (2, 212) = 5.61, p = .004).
Exploring the interaction effect with Tukey analyses revealed that visual saliency had
no effect on test performance on low (p = .24) and medium (p = .90) difficulty tests,
but led to a significant improvement in performance in high (p < .001) difficulty tests
for positive visual saliency (M = 0.45) over negative (M = 0.31), see Fig. 4.8. The
two-way mixed ANOVA did not reveal a significant effect from optimized visuals
alone (F (1, 106) = 2.27, p = .13).

Again, seeing the strong effect of domain on the results of the user studies in
Chapter 6, we explore whether the significant effect noted above was also driven by
domain. Indeed, a t-test revealed that only in the skateboard domain did positive
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Figure 4.8: (a): Optimizing teaching demonstration visuals does not significantly
affect performance on low and medium difficulty tests, but leads to a significant
improvement on high difficulty tests.
(b): Ratings on mental effort and puzzlement surprisingly increased for positive visual
saliency, likely an artifact of unforeseen study design effects. No significant effects
were found for ratings on informativeness.

36



4. Incorporating Scaffolding and Visual Saliency in Demonstration Selection

visual saliency (M = 0.62) yield significantly higher learning outcomes over negative
visual saliency (M = 0.33) for high difficulty tests at Bonferroni adjusted p < .001.

A Mann-Whitney U test found that ratings for mental effort (U(Nneg = 54, Npos =
54) = 1131.5, p = .03) and puzzlement (U(Nneg = 54, Npos = 54) = 1082.5, p = .02)
(M3 and M4) increased for positive visual saliency. Informativeness ratings were not
found to differ significantly between the two visual saliency conditions (p = .11).

The data partially supports H4. Optimizing visuals improved test performance for
high difficulty tests. However, optimizing visuals also yielded counterintuitive results
for the subjective measures on mental effort and puzzlement, which we address in the
following section.

4.5 Discussion

Learning styles: The data refuting H2 suggests that IRL alone is indeed an imperfect
model of human learning, motivating the use of human teaching techniques to better
accommodate human learners.

There was no correlation between information class and test performance, likely a
result of two factors. First, the number of demonstrations provided (two or three)
across the conditions in US1 was likely too few for human learners, who are not pure
IRL learners and can sometimes benefit from ‘redundant’ examples that reinforce a
concept. Second, as will be discussed under the scaffolding subsection in Section 4.5,
BEC area is likely an insufficient model of a demonstration’s information gain to a
human and warrants further iteration.

Accordingly, maximum information demonstrations provided by SCOT (M = 0.61)
failed to significantly improve the percentage of optimal responses compared to
medium (M = 0.65) and low (M = 0.67) information demonstrations, as IRL would
have predicted. The subjective results further indicate that people ironically found
the demonstrations with the highest information gain the least informative. We
hypothesize that participants struggled to digest the information contained within the
SCOT demonstrations all at once, motivating the use of scaffolding to stage learning
into manageable segments.

Furthermore, analyzing the free-form comments provided by participants through-
out the user studies revealed insights about their learning styles. Though this chapter
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assumed that participant learning would resemble IRL, we discovered it sometimes
resembled imitation learning, which models humans as learning the optimal behavior
directly from demonstrations (as opposed to through an intermediate reward function
like IRL) [17, 47]. For example, one participant expounded upon their mental effort
Likert rating (M3) with the following description of IRL-style learning: “You need to
make a moderate amount of mental effort to understand all the rules and outweight
[sic] everything and see what is worth it or not in the game.” In contrast, another
expounded upon their used mental effort rating with the following description of
IL-style learning: “The primary ‘mental effort’ was in memorising the patterns of
each level/stage and matching the optimal movements for them.”

To better understand the types of learning employed by our participants, we
analyzed their optional responses to the following questions: “Feel free to explain any
of your selections above if you wish:” (asked in conjunction with prompts for ratings
of informativeness, mental effort, and puzzlement of demonstrations in each domain,
i.e. three times) and “Do you have any comments or feedback on the study?” (asked
once, after the completion of the full study). Similar to Lage et al. [47], we coded
relevant responses from participants regarding their thought process as resembling
IRL (e.g. “So, the yellow squares should be avoided if possible and they possibly
remove 2 points when crossed but I’m not sure”) or as resembling IL (e.g. “I did
not understand the rule regarding yellow tiles. It seems they should be avoided, but
not always. Interesting...”), or as ‘unclear’ (e.g. “After some examples I feel like I’m
understanding way better these puzzles.”). A second coder uninvolved in the study
independently labeled the same set of responses, assigning the same label to 79%
of the responses. A Cohen’s kappa of 0.64 between the two sets of codings further
indicates moderate to substantial agreement [4, 49, 63]. Please refer to Section 9.1 of
the appendix for the responses, labels, and further details on the coding process.

As Table 4.1 conveys, both coders agreed that more responses resembled IRL than
IL and ‘unclear’ combined, suggesting that people perhaps employed IRL more often
than not. However, we note that the way the tutorials introduced the domains may
have influenced this result. For example, explicitly conveying each domain’s unique
reward features and clarifying that a trajectory’s reward is determined by a weighting
over those features may have encouraged participants to first infer the reward weights
from optimal demonstrations (e.g. through IRL) and then infer the optimal policy

38



4. Incorporating Scaffolding and Visual Saliency in Demonstration Selection

Table 4.1: Coding of qualitative participant responses as resembling inverse reinforce-
ment learning (IRL) or imitation learning (IL), or ‘unclear’.

Learning style Raw counts (across user studies) Percentages (across coders)
Coder 1 Coder 2 User study 1 User study 2

IRL 25 27 32% 68%
IL 7 9 27% 12%
Unclear 15 11 41% 20%

(as opposed to directly inferring the optimal policy e.g. through IL).

Examining the percentage of each response across the two user studies reveals
another interesting trend. Responses were far more likely to be coded as IRL in
US2, where participants got to see five demonstrations as opposed to US1, where
participants only got to see two or three demonstrations. This echoes the observation
of [47] that people may be more inclined to use IL over IRL in less familiar situations,
which may be moderated in future studies through more extensive pre-study practice
and/or additional informative demonstrations that better familiarize the participant
to the domains.

Finally, out of 11 participants who provided more than one response, coders
agreed that 8 appeared to employ the same learning style throughout the user study
(e.g. participants 129 and 142 in US2 only provided responses resembling IRL), 4
appeared to have changed styles through the user study (e.g. participants 59 in US1
and 20 in US2 provided various responses that resembled IL, IRL, or were unclear),
and 3 were ambiguous (i.e. one coder coded a consistent learning style while the
other did not). Though we controlled for learning effects by counterbalancing the
order of the domains, participants likely found the domains to vary in the difficulty
of their respective optimal trajectories (as suggested by the ICC score). Furthermore,
certain conditions led to significant differences in subjective and objective outcomes
(e.g. demonstrations with the highest information gain were ironically perceived to
be least informative (H2) and positive visual saliency improved performance for high
difficulty tests (H4)). We thus hypothesize that the varying difficulties in domains
and conditions non-trivially influenced the learning styles at different times (e.g. by
moderating familiarity [47]).
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Scaffolding: Though BEC area is a well-motivated preliminary model of a
demonstration’s information gain to a human, backward scaffolding’s unexpected
on-par performance with forward scaffolding suggests that it is insufficient and our
scaffolding order likely was not clear cut in either direction. In considering possible
explanations, we note that Eq. 4.4 presents a computationally elegant method of
generating BEC constraints via sub-optimal, one-action deviations from the optimal
trajectory. However, these suboptimal trajectories do not always correspond to the
suboptimal trajectories in the human’s mind (e.g. which may allow more than one-
action deviations). This sometimes leads to a disconnect between a demonstration’s
information gain as measured by BEC area and its informativeness from the point of
view of the human.

Furthermore, forward and backward scaffolding (each comprised of low, medium,
and high information demonstrations) yielded higher performance for low and medium
difficulty tests, and no scaffolding (comprised of only high information demonstra-
tions) yielded significantly higher performance for high difficulty tests. Improved
performance when matching the information gain and difficulty of teaching and testing
demonstrations respectively (which yields similar demonstrations) further suggests
that IL-style learning may have also been at play.

Additionally, participants across each condition never achieved a mean score of
greater than 0.5 for high difficulty tests, indicating that they were largely unable
to grasp the more subtle aspects of the agent’s optimal behavior. While the five
demonstrations shown in US2 should have conveyed the maximum possible information
(in an IRL-sense), they were not as effective in reality. One reason may be that human
cognition is constrained by limited time and computation [28], and at times may opt
for approximate, rather than exact, inference [35, 90]. Approximate inference indeed
would have struggled with high difficulty tests whose optimal behavior could often
only be discerned through exact computation of rewards. We move to an approximate
inference model of human belief later in Chapter 6.

Finally, the current method of scaffolded teaching assumes that the learner has no
prior knowledge when calculating a demonstration’s information gain (e.g. Algorithm
1 considers a repeat showing of a demonstration to a learner as providing equal
information gain as the first showing). But when filtering for teaching and testing
sets for the user studies, we sometimes observed and accounted for the fact that
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demonstrations with the same BEC area could further vary in informativeness or
difficulty to different learners in two primary ways.

First, demonstrations with the same BEC area could differ in informativeness
depending on whether it presented an expected behavior, given the human’s expected
prior knowledge. While we always placed the SCOT demonstrations at the end of
the scaffolded sequence, a SCOT demonstration could have a large BEC area (e.g.
if it only contributes a single constraint) and could be shown earlier. However, a
SCOT demonstration always contributes a (highest information gain) constraint of
BEC(π∗) that is guaranteed to reduce BEC area of the running model of human
knowledge, and showing this SCOT demonstration too soon could render a later
non-SCOT demonstration’s constraints to be redundant. Instead, showing non-SCOT
demonstrations that iteratively decrease in BEC area first, then showing SCOT
demonstrations ensures that the learner always receives non-redundant constraints
on w∗ at each step. These observations highlight that information gain cannot be
calculated based solely based on the demonstration itself (and its BEC area), but
must be calculated with respect to its effect on an explicit model of human prior
knowledge. We believe that providing demonstrations that incrementally deviate from
the human’s current model will be more informative to a human and would be better
suited to scaffolding, which is addressed in the next chapter.

one could include SCOT demonstrations in between the other demonstrations
in theory in order of increasing BEC area However, a SCOT demonstration that
contributes a (highest information gain) constraint of BEC(π∗) may in fact have a large
BEC area. Thus, showing this SCOT demonstration early on may actually render
a later k-means demonstration as uninformative (i.e. the SCOT demonstration’s
BEC(π∗) constraint may cause a later k-means demonstration’s constraints to be
redundant). Instead, showing k-means demonstrations that iteratively decrease in
BEC area, then showing SCOT demonstrations ensures that the learner receives
non-redundant constraints on w∗ at each step. These two observations highlight the
critical importance of maintaining an explicit model of human prior knowledge when
calculating a demonstration’s potential information gain. We believe that providing
demonstrations that incrementally deviate from the human’s current model will be
more informative to a human and would be better suited to scaffolding, which is
addressed in the next chapter.
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Second, we observed that demonstrations where the agent would simply ‘exit’
rather than complete the task (as the latter would yield a lower overall reward
than exiting) were always associated with a relatively large BEC area as considering
one-step deviations (Eq. 4.4) would often only yield a single constraint that would
correspond to a BEC area of 2π, or half of the surface of a sphere in our setting.
But despite the large BEC area, we observed during piloting that ‘exits’ were quite
difficult to understand and predict during teaching and testing, respectively. We
hypothesize that people naturally had a bias toward figuring out how to complete the
task presented to them (e.g. what path should they take) rather than if they should
complete the path. The latter appears to require a more difficult multi-step process
of first determining the best trajectory for completing the task, then comparing that
trajectory’s reward to that of exiting, which is arguably more challenging than simply
determining the best trajectory. The ‘exit’ action was originally incorporated into
the domains in order to support direct inference over the upper and lower bounds of
a reward feature weight given the action weight. The domains in subsequent chapters
remove this action to focus simply on how the agent will complete a task given its
reward function, rather than if it will at all.

Visual Saliency: Optimizing visuals improved test performance, but only for
high difficulty tests. This suggests that simplicity and pattern discovery could produce
a meaningful reduction in complexity for only high information demonstrations (which
contain the insights necessary to do well on the high difficulty tests), while those of
low and medium information were already comprehensible.

We found counterintuitive results on mental effort or puzzlement ratings (M3–M4)
for H4, where ratings for mental effort and puzzlement increased from negative to
positive visual saliency. One factor may have been the open-ended phrasing of the
corresponding Likert prompts that failed to always elicit the intended measure. For
example, one participant expounded upon their mental effort rating by saying “it
takes a bit of efford [sic] remembering that you can quit at any time,” referencing the
difficulty of remembering all available actions rather than the intended difficulty of
performing inference over the optimal behavior.

Similarly, the open-ended prompt for puzzlement failed to always query specifically
for potential puzzlement arising from (a potentially counterintuitive) ordering of the
demonstrations. Instead, it sometimes invited comments on puzzlement arising from

42



4. Incorporating Scaffolding and Visual Saliency in Demonstration Selection

other factors, e.g. “The main puzzling thought is why did the triangle exited in a
configuration and in the next one it decided to do it even though it was the same”,
and interestingly informed us of unforeseen confounders such as limited memory. As
participants could not rewatch previous demonstrations (to enforce scaffolding order),
consecutive demonstrations selected to be as similar as possible (in the positive visual
saliency condition) sometimes led to greater confusion as participants believed they
saw different behaviors in the same environment. To address this issue of limited
memory, in subsequent studies participants were not only allowed to rewatch current
demonstrations but also allowed to freely view any previous demonstrations.

Finally, we note that our selected demonstrations often revealed information about
multiple reward weights at once, which could be difficult to process. Instead, we can
further scaffold by teaching about one weight at a time, when possible, which we
explore in the next chapter.

Testing: Objective and subjective results strongly support BEC area as a measure
of test difficulty, and following studies thus used tests of varying BEC areas to evaluate
and track the learner’s understanding throughout the learning process. One limitation
of this measure of test difficulty is that it is agnostic to the human’s current belief
and is a gross measure (for perhaps an average learner). For example, a test classified
as medium difficulty test may in fact be of medium difficulty to a novice but may be
easy for an expert. In the next chapter, we provide a way to condition on the current
beliefs of a human to provide a more personalized measure of difficulty.

Domain: Exploratory analyses show that two of our key experimental results are
domain-dependent. That is, our findings that no scaffolding increases test performance
over forward scaffolding for high difficulty tests, and positive visual saliency increases
test performance over negative visual saliency for high difficulty tests are both largely
driven by the skateboard domain. As noted previously, the three domains were
designed to vary in the difficulty of their respective trajectories and participant
performance in fact varied across the domains. Seeing how even seemingly similar
grid world domains can impact the efficacy of the proposed methods, we explicitly
consider domain as an independent variable in the user studies in Chapter 6 and
provide further discussion in Chapter 7.
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5
Demonstration

Selection by Reasoning
over Human

Counterfactual Beliefs
and Feature Spaces

This chapter builds on the previous by modifying how the information gain of
demonstrations are calculated during scaffolding, which was originally done without
consideration for the human’s current beliefs. Instead, we now explicitly model
the human’s beliefs over the robot’s decision making and calculate a demonstra-
tion’s information gain based on how it differs from the human’s expectations (i.e.
counterfactuals) of what the robot will do. A calibrated measure of demonstration
information gain aids in the selection of demonstrations that fall in the zone of
proximal development. Second, we aim to further improve demonstration selection by
incrementally increasing (and scaffolding) the number of unique reward features that
are conveyed. And finally, we also update our measure for estimating the difficulty
for a human to predict instances of a robot’s behavior in unseen environments as tests
by conditioning it on a human’s current beliefs of the reward function, measuring
how many of that individual’s beliefs would yield the correct behavior1.

A user study finds that our test difficulty measure correlates well with human
performance and confidence but finds no effect for feature scaffolding. Considering
human beliefs on robot decision-making in selecting informative demonstrations
decreases human performance on easy tests, but increases performance for difficult
tests, providing insight on how to best utilize such human models.

1The contents of this chapter were presented at IROS and is available at [52].
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Figure 5.1: (a) A robot’s optimal demonstration (green) is shown in contrast to a
suboptimal counterfactual alternative (red). (b) A robot’s optimal demonstration is
shown in contrast to a counterfactual likely considered by a human who has seen the
demonstration in (a). (c) Sample counterfactual alternatives to the robot’s trajectory
in (b) that are considered by standard IRL, generated by deviating from the robot’s
path by one action (pink), then following the robot’s optimal policy afterward (blue).
Note that neither matches the human’s counterfactual.

5.1 Motivation

For IRL, the information a demonstration reveals regarding the underlying reward
function inherently depends on the counterfactuals (i.e. alternative, suboptimal
demonstrations) that are considered. Imagine a human who encounters a robot in
the delivery domain for the first time. To convey its reward function, imagine the
robot providing a human with the demonstration in Fig. 5.1a. Because the robot
takes a two-action detour to avoid the mud instead of going through it (a natural
counterfactual), the human may infer that the robot associates a negative reward
with going through mud.

After providing this first demonstration, the robot considers what to demonstrate
next to convey more information regarding its reward function. Importantly it knows
that the human likely knows that mud is costly from the first demonstration, but
does not know how costly. For instance, the human may reasonably believe that
the robot would take a four-action detour when faced with two mud patches (Fig.
5.1b). However, the robot knows that its ratio of mud to action reward is -3 to -1
and that consequently, it would simply go through the mud in Fig. 5.1b to maximize
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its reward. Seeing how its direct path meaningfully differs from the human’s likely
counterfactual that detours heavily, the robot considers this to be a very informative
demonstration to provide next to upper-bound the human’s belief of the cost of mud.

Standard IRL [66], however, does not model the learner’s beliefs and would fail
to consider this detouring human counterfactual. Instead, standard IRL enumerates
all trajectories that differ by a single initial action as counterfactuals. Two sample
IRL counterfactuals are shown in Fig. 5.1c, but neither matches the intuitive human
counterfactual of completely detouring around the mud. As a result, IRL has the
potential to both under- and over-estimate the information gain of a demonstration
to a human by considering the wrong counterfactuals or considering too many,
respectively.

Looking to the related literature on how humans explain to one another, Miller
notes that “explanations are contrastive—they are sought in response to particular
counterfactual cases,” and that it is critical that the learner’s counterfactuals matches
the ones intended by the teacher [65]. In our work, we tailor demonstrations to the
learner given the agent’s estimate of the human’s current belief and the counterfactuals
that the human will likely consider.

Furthermore, Reiser [78] suggests that scaffolding should sometimes challenge
the learner by inducing cognitive conflict whose reconciliation results in learning
(e.g. by providing examples that challenge and refine the learner’s current under-
standing). Thus, this chapter aims to ensure that the robot correctly anticipates the
human’s likely counterfactuals and provides demonstrations that differ from those
counterfactuals to provide information, which we explore next.

5.2 Methods

This section develops methods that leverage a model of the learner’s current beliefs
and likely counterfactuals in 1) selecting informative teaching demonstrations and 2)
rating the difficulty of potential tests. We also consider providing further scaffolding
on teaching demonstrations by incrementally increasing the number of reward weights
communicated by each demonstration.
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Counterfactual Scaffolding

We make two observations regarding the BEC. First, Eq. 4.4 captures the key
idea that IRL depends not only on the robot’s optimal trajectory but also on the
suboptimal counterfactual trajectories that are considered, represented by µ(s,a)

π and
µ(s,b)

π respectively. Second, BEC(D|π) could be used to model the human’s belief
over the robot’s possible reward weights after having seen D. We now build on these
concepts to leverage a human model and select demonstrations that account for
human counterfactuals2.

As previously mentioned, a demonstration’s ability to reveal the underlying
reward function via IRL hinges on the counterfactuals considered. However, many
counterfactuals proposed by IRL can seem nonsensical to humans as they fail to
consider the human’s beliefs. Instead, IRL generates counterfactuals in the following
way—at each state s along the robot’s optimal trajectory, it first takes a potentially
suboptimal action b before following the optimal policy afterward (4.4). This process
generates the two sample counterfactuals in Fig. 5.1c, which do not correspond to the
human counterfactual in Fig. 5.1b. While such one-action deviations from the optimal
trajectory are computationally sensible and efficient (i.e. multi-action deviations
often yield only redundant constraints), these are unlikely to be the counterfactuals
on the human’s mind for a number of reasons.

First, humans are unlikely to methodically go through each state of the robot’s
trajectory and consider all alternative actions. Instead, humans naturally incline
toward a few causes and a few counterfactuals for explanation [65]. This can lead
IRL to overvalue the information gain of a demonstration if counterfactuals beyond
those on the human’s mind are considered. Second, IRL counterfactuals are generated
by “perturbing” the demonstration directly (by taking a suboptimal action) and
may not be consistent with any reward function (e.g. no reward function in the
delivery domain would first avoid mud, then later go through mud like one of the
counterfactuals in Fig. 5.1c). While humans may consider a reward function that
differs from the robot’s, their counterfactuals are likely to be consistent with that
differing reward function (e.g. avoiding the mud both ways in Fig. 5.1b). This

2Code for the methods, domains, and relevant hyper-parameters (e.g.
reward weights, sample rate) used in this study can be found at
https://github.com/SUCCESS-MURI/counterfactual human IRL.
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can lead IRL to also undervalue a demonstration’s information gain if the human’s
counterfactuals are not considered.

In selecting effective explanations, we posit that you must consider not only the
learner’s learning model (i.e. IRL) but also their beliefs and subsequently what
counterfactuals they would consider. We thus extend our work in the previous chapter
to evaluate a demonstration’s information gain based on counterfactuals generated
via potential reward functions estimated to be on the human’s mind as opposed
to counterfactuals generated via one-action deviations, and scaffold by showing
demonstrations of increasing information gain.

To account for human beliefs and counterfactuals when evaluating the information
gain of potential demonstrations, we do the following. First, we instantiate a prior
model of the human’s beliefs over the reward feature weights w∗, B(w∗). This model
could be the full N − 1 sphere if the human has no prior knowledge, or it may be a
partial sphere due to prior knowledge (e.g. that action reward is negative). Then
we sample m weights from B(w∗). Each weight represents a particular belief that
the human could have over the robot’s reward function. For every robot possible
demonstration in a domain, and for each of the m weights, we simulate what the
human counterfactual to each demonstration would be if the human had this reward
weight in mind and generate the corresponding constraints using (4.4). For each
possible demonstration by the robot, we consolidate the corresponding m human
counterfactuals by taking a union of all corresponding constraints. Finally, we select
the demonstration that maximizes information gain, i.e. select the demonstration
that maximizes the ratio between B(w∗) before and after the human sees this
demonstration. We take the ratio rather than the difference as we empirically
observed that the latter does not faithfully capture information gain in instances
where B(w∗) has unequal uncertainty across multiple feature weights (e.g. the
ratio between a narrow, long B(w∗) and a narrow, short B(w∗) is large whereas
the difference is small even though much information was gained on the uncertain
feature). Once we have shown the selected demonstration and updated B(w∗), we
select the next demonstration to show by sampling m weights from the updated
B(w∗) and repeating the steps above. This method is summarized in Alg. 2.
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Algorithm 2 Counterfactual Machine Teaching for Humans
Require: π∗: robot policy, Ξ: all possible demonstrations of π∗ in a domain, m:

number of beliefs to sample, B(w∗): human prior over robot reward weights
1: infoGain = ∞
2: D = [ ]
3: while infoGain ̸= 0 do
4: Bdict = ∅
5: // Sample human beliefs on w∗

6: W = sample(m, B(w∗))
7: // Obtain constraints yielded by each possible demonstration, conditioned on

// the sampled human beliefs
8: for ξ ∈ Ξ do
9: C = ∅

10: for w ∈ W do
11: // Constraints given “human” counterfactual. N̂[·] extracts unit normal

// vectors corresponding to a set of half-space constraints
12: C = C ∪ N̂[BEC(ξ|πw)]
13: end for
14: // Store updated belief given this demonstration
15: Bdict[ξ] = C ∪ N̂[B(w∗))]
16: end for
17: // Select the trajectory that maximizes information gain
18: ξ∗ = argmax

ξ∈Ξ
BECArea(B(w∗)) / BECArea(Bdict[ξ])

19: infoGain = BECArea(B(w∗)) / BECArea(Bdict[ξ∗])
20: if infoGain ̸= 1 then
21: D.append(ξ∗)
22: Ξ = Ξ \ ξ∗ ▷ \ denotes set subtraction
23: B(w∗) = Bdict[ξ] ▷ Update human belief
24: end if
25: end while
26: return D ▷ Final demonstration set to show human
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Feature Scaffolding

A standard scaffolding technique suggested by Wood et al. [96] is to reduce the degrees
of freedom of the problem. Accordingly, one could initially show demonstrations
that limit the number of reward features over which information is conveyed. In the
delivery domain, one could show demonstrations that convey information on the mud
and action weights first, then on battery recharge and action weights, then on mud,
battery, and action weights to show potentially nuanced tradeoffs. Put another way,
this sequence of demonstrations first “masks” the battery recharge weight, then the
mud weight, then no weights, filtering demonstrations such that they do not convey
information on a masked weight. In general, we can scaffold k features by showing
demonstrations that iteratively mask k − 2, k − 3, ..., 0 features (because solutions of
IRL are scale-invariant, we must show at least two features at a time relative to one
another, e.g. how many actions the robot is willing to take to avoid mud). At every
iteration in which we wish to mask n features, there are

(
k
n

)
possible masks that can

be applied. We now discuss how to order the possible masks at every iteration.
The key idea behind ordering the possible masks is to hide features that appear

infrequently, as infrequently appearing features are less likely to be able to initially
support fine-grain comparisons. To do so, we first obtain all possible constraints that
could be generated using Eq. 4.4 for all possible agent demonstrations in a domain.
Then we tally the number of nonzero entries across all of the constraints (e.g. the
sample constraint w⊤[2, 0, −5] ≥ 0 has nonzero entries for the first and third features)
for each feature. For each of the

(
k
n

)
masks, we simply sum the frequency of each of

the masked features and order them from the lowest sum to the highest sum (which
will allow the features with the highest frequency to be conveyed first and the features
with the lowest frequency to be conveyed last).

Once the order of masks has been decided, we apply each of the masks in this
iteration in turn (where each iteration corresponds to masking n features). For each
mask that is applied, we remove any demonstrations that convey information about
a masked feature from consideration (i.e. any demonstrations that convey constraints
in which the entry for a masked feature is nonzero). From this reduced set of demon-
strations, we run counterfactual scaffolding as described in the previous subsection
until there are no more demonstrations that can provide additional information gain.
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We then move on to the next mask in this iteration, removing any demonstrations
that convey information about a masked feature from consideration and running
counterfactual scaffolding until there are no more demonstrations that can provide
additional information gain. And so on and so forth until all masks in this iteration
have been applied. We then move on to the set of masks for the next iteration (which
are also ordered by the frequency of masked features), until we have gone through
every possible mask. In the delivery domain, the first iteration would first mask
recharging and only show demonstrations that trade off mud and action weights,
then would mask mud and only show demonstrations that trade off recharge and
action weights. The second iteration would not mask any feature but would show
trade-offs that involve mud, recharge, and action weights. We note that the approach
as conveyed here is exponential in the number of reward features, and we leave the
formulation of a more efficient, non-exhaustive method for future work.

Testing

The area of a demonstration’s BEC intuitively correlates with its information gain
during teaching as smaller areas indicate less uncertainty regarding w∗. The previous
chapter showed that a demonstration’s BEC area may also be inverted to measure
the difficulty of correctly predicting the demonstration as a test if the human has not
seen it before (e.g. so that a smaller BEC area indicates a more difficult test). But
as previously mentioned, this measure is perhaps a gross measure as it is agnostic to
a human’s current beliefs.

We hypothesize that the overlap between BEC(ξ|π∗) and B(w∗), a model of a
human’s beliefs over the robot’s reward weight, better captures the difficulty of a
demonstration ξ as a test for this particular individual. This overlap intuitively
represents the number of candidate reward functions in the human’s mind that would
generate the correct behavior. As seen in Fig. 5.2, a demonstration may have an
intrinsically large BEC area but may not overlap much with the human’s belief and
may therefore be a difficult test for this individual.

To estimate the expected difficulty of each ξ that could be shown in a domain,
we first obtain the BEC(ξ|π∗) using (4.4). Noting that one-action deviation does
not always consider all reasonable counterfactual trajectories, we take a union over
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Figure 5.2: There are many reward weights BEC(ξ|π∗) (yellow) that will generate
the demonstration ξ. However, only a portion overlaps with the weights currently
on the human’s mind B(w∗) (green), making it difficult for the human to correctly
predict ξ during testing.
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Algorithm 3 Measuring Test Difficulty of a Demonstration
Require: π∗: robot policy, ξ: demo, m: number of beliefs to sample, B(w∗): human

prior over robot reward weights
1: BEC′(ξ|π∗) = ∅
2: // Sample possible beliefs on w∗

3: W = sample(m, B(w∗))
4: // Obtain constraints yielded by each possible demonstration, using both standard

IRL and human counterfactuals
5: BEC′(ξ|π∗) = BEC′(ξ|π∗) ∪ N̂[BEC(ξ|π∗)]
6: for w ∈ W do
7: BEC′(ξ|π∗) = BEC′(ξ|π∗) ∪ N̂[BEC(ξ|πw)]
8: end for
9: // The overlap is inversely correlated to difficulty

10: difficulty = 1/measureOverlap(B(w∗), BEC′(ξ|π∗))
11: return difficulty

constraints that define BEC(ξ|π∗) and constraints obtained from counterfactual
scaffolding using m models sampled from the human’s belief over the agent’s reward
weights B(w∗). These combined constraints for each demonstration will give a better
estimate of the set of all weights that yield the correct demonstration, denoted by
BEC′(ξ|π∗). Finally, to measure the difficulty of a demonstration ξ as a test for this
human, we simply take the overlap between B(w∗) and BEC′(ξ|π∗). The smaller
the overlap, the fewer of the reward weights in the human’s mind will generate the
correct demonstration and the harder the test. This method is summarized in Alg. 3.

5.3 User Study

We ran an online user study3 that explored whether demonstrations selected using
our proposed methods of counterfactual and feature scaffolding improves a human’s
understanding of a robot’s policy. Similar to the user studies of Chapter 4, this
study involved participants watching robot demonstrations in three domains and
predicting the robot’s behavior in new test environments. Each domain consisted of
one shared action reward feature (that penalized each action with a reward weight of

3Code for the user study, data, and analyses can be found at
https://github.com/SUCCESS-MURI/counterfactual human IRL study.
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Figure 5.3: Three domains were designed for the user study, each with a different set
of reward weights to infer from demonstrations: (a) delivery (b) tiles (c) skateboard.
The semantics of the various objects were hidden using abstract geometric shapes
and colors.

-1), and two unique reward features as follows with the corresponding reward weight
in parentheses (see Fig. 5.3).

Domains

Delivery domain. The robot is penalized for moving out of mud (-3) and rewarded
for recharging (+3.5). Five demonstrations were shown in this domain.

Tiles domain4. The robot is penalized differently for traversing the two differently
shaped tiles (-6.5 and -5.25 respectively). Five demonstrations were shown in this
domain.

Skateboard domain. The robot is penalized less per action if it has either
picked up a skateboard (i.e. riding a skateboard is less costly than walking, +0.825)
or is traversing through a designated path (-5.25). Seven demonstrations were shown
in this domain.

The number of demonstrations shown in each domain was determined by the
number needed by counterfactual and feature scaffolding to arrive at a resultant BEC
area that matched that of SCOT demonstrations. More demonstrations were selected
in the skateboard domain than others steadily work up to the nuanced trade-offs

4The tiles domain replaces the two-goal domain in the previous chapter, as the reward weights in
the latter reduce to a single trade-off regarding which goal to go to without an ‘exit’ action (i.e. the
weights would lie on the perimeter of a unit circle rather than the surface of the unit sphere like the
other domains).
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likely arising from the more fine-grained reward weights.

Study design

The participants were explicitly informed of each domain’s reward features, but had to
infer the respective reward weights by watching demonstrations. The demonstrations
they were provided were determined by the one of four between-subjects conditions
they were assigned.

The between-subjects variables were BEC scaffolding (counterfactual and baseline),
and feature scaffolding (yes and no). Baseline scaffolding followed the method proposed
by our prior work 4, using one-action deviations to generate counterfactuals and
selecting demonstrations that iteratively decreased in BEC area. As a brief refresher,
baseline scaffolding ordered demonstrations by their BEC area, then clustered in (n
- j) * 2 - 1 clusters (where n is the teaching budget and j is the number of SCOT
demonstrations), such that demonstrations could be selected from every other cluster.
Baseline scaffolding demonstrations always ended with SCOT demonstrations. And
no feature scaffolding did not iteratively mask features or hold out corresponding
demonstrations as feature scaffolding did. When counterfactual scaffolding was paired
with no feature scaffolding, a demonstration that provided 70% of the maximal
information gain was always selected for the delivery and skateboard domains to
allow all between-subjects conditions to provide the same number of demonstrations
(otherwise this condition would have shown fewer demonstrations than the other
conditions). Importantly, we note that demonstrations from all conditions resulted in
the same final BEC area for each domain, theoretically providing the same amount
of information in the end. Finally, we conservatively modeled B(w∗) prior to any
demonstrations having been shown as knowing that the action reward is negative
(assuming a human bias for efficiency).

All four between-subjects conditions optimized visual similarity amongst consec-
utive demonstrations and visual simplicity within demonstrations, as suggested by
our prior work 4. Thus, for any given set of demonstrations with equal information
gain, the one that looked most similar to the previously shown demonstration (e.g.
location of mud patches) and also had the fewest visual clutter (e.g. number of mud
patches) was selected to be shown next.
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There were also two within-subject variables: domain (delivery, tiles, skateboard)
and test difficulty (high, medium, and low). The tests were pulled from three
representative sets of demonstrations that had high, medium, and low overlap between
B(w∗) and BEC′(ξ|π∗)) for the low, medium, and high difficulty test conditions.
Specifically, the overlaps for every possible demonstration in a domain were ordered
from high to low, grouped into five clusters using K-means, and high, medium, and
low overlap demonstrations were taken from the 1st, 3rd, and 5th cluster respectively.
We conservatively modeled the B(w∗) of a person who watched all of the teaching
demonstrations with constraints as knowing the correct sign of each of the reward
weights (e.g. knowing that mud is negative and battery is positive in the delivery
domain).

The user study itself consisted of three trials, with each trial comprising a teaching
portion and a testing portion in a unique domain. During teaching, participants
were explicitly informed of the reward features of the domain, then they inferred the
corresponding reward weights by watching demonstrations. To mitigate the effects of
limited memory, participants were allowed to watch a demonstration as many times
as they wished, and were also allowed to rewatch previous demonstrations during the
teaching portion. Before moving on to the testing portion, the participants provided
subjective observations regarding the demonstrations. For testing, participants were
tasked with predicting the optimal trajectory in six unseen test environments (a
random order of two high, medium, and low difficulty environments each) and rating
their confidence in their responses.

Hypotheses

H1: The overlap between a human’s belief over the weights B(w∗) and the BEC of
a demonstration BEC′(ξ|π∗) during teaching correlates inversely to the difficulty of
predicting it during testing and correlates directly to their prediction confidence.

H2: Demonstrations selected with counterfactual scaffolding will result in higher
perceived informativeness during teaching and better participant test performance
over those selected with baseline scaffolding [51].

H3: Demonstrations selected with feature scaffolding will result in lower mental
effort during teaching and better participant test performance over those selected
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without.
H4: Demonstrations selected with counterfactual scaffolding and feature scaffold-

ing will result in the highest perceived informativeness of teaching demonstrations,
lowest mental effort, and best participant test performance compared to the other
possible conditions.

Measures

The following objective and subjective measures were recorded to evaluate the afore-
mentioned hypotheses. The Likert scales corresponding to M2-M3 were provided
after all of the demonstrations but before the tests. The Likert scale corresponding
to M4 was provided after each test.
M1. Optimal response: Participants were assigned a binary score depending on
the optimality of their test trajectory.
M2. Informativeness rating: “How informative were these demonstrations in
understanding the best strategy [robot’s policy] in this game?”, answered with a
5-point Likert scale
M3. Mental effort rating: “How much mental effort was required to understand
the best strategy [robot’s policy] in this game?”, answered with a 5-point Likert scale
M4. Confidence rating: “How confident are you that you minimized [the robot’s]
energy loss while completing the task [i.e. performed the task optimally in this unseen
test environment]?”, answered with a 5-point Likert scale

These measures correspond to those used in the user studies in the previous
chapter, with the exception of ‘puzzlement rating’, which was originally included to
potentially highlight the expected counterintuitive ordering of backward-scaffolded
demonstrations.

5.4 Results

We collected data from 216 participants using Prolific. Participants were roughly
67% male, 32% female, 1% non-binary, and ages varied from 18 to 69 (M = 28.39,
SD = 9.48). The recruitment process and study was approved by Carnegie Mellon
University’s Institutional Review Board. 54 participants were randomly assigned to
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each of the four between-subjects conditions and the order in which the domains
were shown was fully counterbalanced. We removed data from 4 participants whose
aggregate test performance (compared to the optimal answer)5 or individual test
performances (compared to other participants)6 were 3 standard deviations below
their respective means as outliers.

The three domains varied in the difficulties of their optimal policies. We calculated
a mean-rating (k = 3), 2-way mixed effects, consistency-based intraclass coefficient
(ICC) to see how the performance of each participant varied across domains [45].
Given an ICC of 0.32 that indicates significant variance (p < .001), we average
the performance of every participant across domains and provide findings that may
represent a range of domains and difficulties.

H1: A one-way repeated measures ANOVA on percentage of optimal responses re-
vealed a statistically significant difference across test difficulty (F (2, 422) = 289.78, p <

.001). Post-hoc pairwise Tukey analyses confirmed significant differences between
high (M = 0.40), medium (M = 0.71), and low (M = 0.86) test difficulties (p < .001
in all cases).

Spearman’s rank-order correlation revealed that confidence inversely correlated
significantly with test difficulty (rs = −.36, p < .001, N = 636).

The data strongly support H1 that the overlap between B(w∗) and BEC′(ξ|π∗)
captures a demonstration’s difficulty for testing. We also confirm test difficulty as a
valid within-subjects variable.

H2: A two-way mixed ANOVA revealed a significant interaction between counter-
factual scaffolding and test difficulty for percentage of optimal responses (F (2, 420) =
6.56, p = .002). Tukey analyses revealed that for low difficulty tests (p = .002),
no counterfactual scaffolding (M = 0.90) significantly improved performance over
counterfactual scaffolding (M = 0.83). However, the relationship was reversed for
high difficulty tests (p = .048) with counterfactual scaffolding (M = 0.44) outper-
forming no counterfactual scaffolding (M = 0.37), as Fig. 5.4 shows. A significant
effect was not revealed for counterfactual scaffolding by a two-way mixed ANOVA

5Calculated by averaging each participant’s 18 test responses (i.e. six tests in three domains)
into a percentage of tests that the participant got correct.

6Calculated by comparing an individual’s test performances against other participants. The
number of times a participant’s reward for a test trajectory was 3 standard deviations below the
mean reward was compared.
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Figure 5.4: While baseline scaffolding significantly increases performance on low
difficulty tests over counterfactual scaffolding, the effect is reversed for high difficulty
tests.

(F (1, 210) = 0.47, p = .49).
Ratings for mental effort was found by a Mann-Whitney U test to be significantly

higher for counterfactual scaffolding (U(Nbaseline = 108, Ncounterfactual = 104) =
4690.0, p = .03). The two counterfactual scaffolding conditions did not differ signifi-
cantly in informativeness ratings (p = .08).

As exploratory measures, we also recorded the average number of times a partici-
pant watched each demonstration and the time taken for a participant to provide
a test demonstration and rate their confidence. Interestingly, Tukey analyses re-
vealed that counterfactual scaffolding significantly increased the average number of
times a teaching demonstration was watched (M = 1.23) over baseline scaffolding
(M = 1.15, p = .02) and also significantly increased the time taken to complete a test
(M = 2.95 sec) over baseline scaffolding (M = 2.49 sec, p = .01).
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Finally, seeing the strong effect of domain on the results of the user studies
in Chapter 6, we explore whether the significant effects above were also driven by
domain. Indeed, t-tests revealed that only in the skateboard domain did counterfactual
scaffolding yield significantly higher learning outcomes over baseline scaffolding for
high difficulty tests (M = 0.49 vs M = 0.27, at Bonferroni adjusted p < .001) and
the relationship significantly reverse for low difficulty tests (M = 0.59 vs M = 0.77,
at Bonferroni adjusted p = .006). Interestingly, Mann-Whitney U tests showed that
the only significant difference in ratings of mental effort for counterfactual scaffolding
was in colored tiles, where counterfactual scaffolding was rated to require more
mental effort (M = 2.32) over no counterfactual scaffolding (M = 2.02) at Bonferroni
adjusted p = .042.

The data partially support H2. Counterfactual scaffolding fails to outperform
baseline scaffolding in test performance. However, counterfactual scaffolding appears
to improve test performance on high difficulty tests at the cost of increased mental
effort (as indicated by both objective and subjective measures).

H3: A two-way mixed ANOVA revealed that feature scaffolding had no signif-
icant effect on percentage of optimal responses (F (1, 210) = 1.79, p = .18), and no
interaction between feature scaffolding and test difficulty (F (2, 420) = 1.72, p = .18).
Mann-Whitney U tests found that feature scaffolding did not impact ratings on
informativeness (p = .81) nor mental effort (p = 0.14). Again, we did an exploratory
analysis to see if feature scaffolding would have an interaction effect with domain on
percentage of optimal responses but did not find any.

The data does not support H3. We did not observe any effect for feature scaffolding.
H4: A two-way mixed ANOVA revealed a significant interaction effect between the

four possible between-subjects conditions and test difficulty on percentage of optimal
responses (F (6, 416) = 4.40, p < .001). Tukey analyses showed that counterfactual
scaffolding with no feature scaffolding (M = 0.75) was significantly outperformed by
baseline scaffolding with (M = 0.88) and without (M = 0.91) feature scaffolding, and
also by counterfactual scaffolding with feature scaffolding (M = 0.91) for low test
difficulty. The conditions did not significantly affect test performance (F (3, 208) =
1.98, p = .12).

Mann-Whitney U tests revealed that counterfactual scaffolding with feature
scaffolding (the proposed method in this work) required the most mental effort (Mdn
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= 3) over baseline scaffolding with (Mdn = 2, p < .001) and without (Mdn = 2,
p = .007) feature scaffolding, and also by counterfactual scaffolding without feature
scaffolding (Mdn = 2, p = .005).

The data does not support H4. The observations that counterfactual scaffolding
can decrease performance on low difficulty tests and requires more mental effort
corroborates the findings for H2.

5.5 Discussion

The overlap between a human’s belief over the weights B(w∗) and the BEC of a
demonstration BEC′(ξ|π∗) correlated inversely to the difficulty of predicting it during
testing and correlated directly to their prediction confidence, such that H1 was
strongly supported. Whereas the prior chapter’s test difficulty measure solely relied
on demonstration (i.e. test answer) BEC and was intrinsic to the test, the overlap is
a more personalized test difficulty measure.

Whereas the measure of test difficulty from Chapter 4 solely based on demonstra-
tion (i.e. test answer) BEC is intrinsic to the test, this new measure of test difficulty
based on the overlap with the human’s belief over the weights and allows for a more
personalized measure of difficulty.

Contrary to expectation, feature scaffolding did not yield any objective or sub-
jective results and H3 was not supported. The domains each only had three reward
features, which perhaps were already too few to significantly benefit from scaffolding.
We hypothesize that domains with a higher number of reward features may stand
more to gain from feature scaffolding.

The effect of counterfactual scaffolding was more nuanced than H2 and H4 initially
expected. First, counterfactual scaffolding failed to outperform baseline scaffolding
in test performance as a main effect. However, counterfactual scaffolding improved
test performance on high difficulty tests at the cost of increased mental effort (as
indicated by both objective and subjective measures) as an interaction effect. Along
the same vein, counterfactual scaffolding with feature scaffolding (the experimental
condition) required the most mental effort over any other condition but also yielded
the highest overall and high test difficulty performance of counterfactual scaffolding
with feature scaffolding (M = 0.68, M = 0.45 respectively), over baseline scaffolding
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with (M = 0.66, M = 0.35) and without (M = 0.67, M = 0.39) feature scaffolding
and counterfactual scaffolding without feature scaffolding (M = 0.63, M = 0.42).

The aforementioned results highlighted a tension that we did not initially expect,
but makes sense in hindsight. As previously noted, Reiser [78] suggests that scaffolding
should sometimes challenge and engage the learner by inducing cognitive conflict.
Indeed counterfactual scaffolding explicitly selects demonstrations that would not be
anticipated by the learner and requires the learner to reconcile the gap by updating
their belief. It is unsurprising in retrospect that mental effort is often required to
learn new material; the key is ensuring that the material belongs to the student’s
zone of proximal development and that the mental effort required is just right.
This is arguably reminiscent of the famous Yerkes-Dodson law that has shown that
performance increases with physiological and mental arousal up to a point, then
performance decreases with arousal [99].

Counterfactual scaffolding also surprisingly performed worse than baseline scaf-
folding for low difficulty tests (despite performing better than baseline scaffolding for
high difficulty tests as previously mentioned). One possible explanation may lie in the
fact that demonstrations conveying information necessary for answering low and high
difficulty tests appeared in earlier and later demonstrations, respectively. Given that
higher performance on high difficulty tests (which in theory requires a more focused
understanding of the agent’s reward function – i.e. a smaller BEC) did not translate
to higher performance on low difficulty tests suggests that participants may have
again learned from demonstrations using a more imitation learning-style of reasoning
(where they were able to simply recall and reproduce the later demonstration better).
Additionally, our counterfactual scaffolding method always presented demonstrations
with high information gain given the user’s current belief. However, a person’s learn-
ing ability is likely more context-dependent (e.g. on their prior knowledge, current
stage of learning, etc) and the pace of learning should be more personalized, which
we address through a closed-loop teaching framework in the next chapter. And as we
again see key significant results for counterfactual scaffolding and mental effort only
holding for a subset of the domains, we consider domain as an independent variable in
the user studies of Chapter 6 and provide further discussion on the impact of domain
in Chapter 7.
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6 Closing the Teaching
Loop with in situ

Demonstration
Selection

This thesis has thus far explored how an agent can select informative demonstrations
that reveal its reward function to a human. Each characteristic of the reward function
can be thought of as a knowledge component (KC), which is broadly defined in the
education literature as “a concept, principle, fact, or skill inferred from performance
on a set of related tasks” [43]. In this thesis, KCs are operationalized as discrete
constraints on the reward function, like mud being at least twice as costly as an
action, or mud being less costly than four actions.

Though machine teaching can assist in selecting a principled curriculum of demon-
strations that teach a set of a priori, student learning may deviate from the modeled
learning trajectory in situ. In the previous chapter, machine teaching-selected demon-
strations improved human performance on tests examining understanding of early-
demonstrated concepts but decreased performance on tests examining understanding
of later-demonstrated concepts, suggesting perhaps that the curriculum moved too
quickly past the early concepts without testing and providing additional instruction
as necessary.

Thus, our key idea is to complement a curriculum of machine teaching-selected
demonstrations with a closed-loop teaching framework inspired by the education lit-
erature to provide tailored instruction in real-time (Fig 6.1). A guiding educational
concept is teaching in the zone of proximal development (ZPD) or “Goldilocks zone”
[31, 91], which suggests that the examples provided to the learner should not be too
easy nor too difficult, given their current understanding. However, the ZPD often
changes at different rates for different students based on their personal learning rate,
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Figure 6.1: (a) Previous work aimed to improve policy transparency via a set of
demonstrations selected a priori, but student learning may deviate from the expected
trajectory. (b) We propose a closed-loop teaching framework using tests, feedback,
etc., to detect and correct for such deviations in situ.

which must be assessed periodically through testing. We inform the testing cadence
with the educational concept of the testing effect [79], which predicts an increase in
learning outcomes when a portion of the teaching budget is devoted to testing the
student (leveraging testing not only as a tool for assessment but also for teaching). By
incorporating tests and feedback in a closed teaching loop, we maintain an up-to-date
model of human beliefs and promote subsequent demonstrations that are provided at
the right level of difficulty.

Our contributions are as follows: First, a closed-loop teaching framework based
on insights from the education literature that provides demonstrations, tests, and
feedback as necessary. Second, a particle filter model of human beliefs that supports
iterative updates and a calibrated prediction of the counterfactuals likely considered
by the human for each demonstration that could be provided. Third, a user study
finds that our proposed framework reduces the regret of human test responses by
43% over a baseline and is rated as more usable by users in one of the two considered
domains.

6.1 Methods

The example of the delivery robot in Section 5.1 highlights the importance of maintain-
ing an up-to-date model of human beliefs and likely counterfactuals when selecting a
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Figure 6.2: (a) A robot’s optimal demonstration (green) is shown in contrast to a
suboptimal counterfactual alternative (red). (b) A robot’s optimal demonstration is
shown in contrast to a counterfactual likely considered by a human who has seen the
demonstration in (a). (c) Sample counterfactual alternatives to the robot’s trajectory
in (b) that are considered by standard IRL, generated by deviating from the robot’s
path by one action (pink), then following the robot’s optimal policy afterward (blue).
Note that neither matches the human’s counterfactual.

demonstration; we wish to provide an informative demonstration that differs from the
human’s expectations (see Fig. 6.2, which is copied from Section 5.1 for convenience).
In this section, we propose a particle filter-based model of human beliefs that is
amenable to iterative Bayesian updates and sampling for counterfactual reasoning. We
then leverage this model in a closed-loop teaching framework that leverages insights
from the education literature to select demonstrations that target gaps identified
through testing.

Particle Filter Human Model

Though our prior work previously modeled the human as an exact IRL learner 5, this
choice falls short for two reasons. First, people are more likely to perform approximate,
rather than exact, inference [35]. Second, a model of human beliefs solely comprised
of half-spaces cannot handle conflicts that arise when the human incorrectly applies a
knowledge component (KC) during testing that was assumed learned during teaching
(as you cannot reconcile two identical half-space constraints that point in opposite
directions).

We thus move to a probabilistic human model in the form of a particle filter. Each
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Algorithm 4 Particle Filter for Modeling Human Beliefs
1: Initialize particles x

(i)
0 ∼ p(x0) for i = 1, . . . , N

2: for t = 1, . . . , T do
3: // Update filter given new demonstration or test at t
4: for i = 1, . . . , N do
5: Compute weight w̌

(i)
t = w̌

(i)
t−1 · p(x(i)

t |yt) ▷ Update Particle Positions and Weights
6: end for
7: if

∑N
j=1 w̌

(j)
t < w̌threshold then

8: Perform a particle filter reset
9: end if

10: Normalize weights w̃
(i)
t = w̌

(i)
t∑N

j=1
w̌

(j)
t

11: Compute effective sample size neff = 1∑N

i=1
(w̃

(i)
t )2

12: if neff < Nthreshold then
13: Resample x

(i)
t with probabilities w̃

(i)
t using KLD resampling

14: end if
15: end for

particle represents a potential human belief regarding the robot’s reward function,
and particle weights are updated in a Bayesian fashion based on constraints conveyed
through teaching demonstrations and test responses. Leveraging both constraints
and Bayesian updates gracefully affords both reasoning over KCs (e.g. bounds on the
cost of mud) and probabilistic modeling of human understanding that is amenable to
iterative updates during teaching and testing. The particle filter routines outlined in
the following paragraphs come together in Alg. 4.

Updating Particle Positions and Weights

Assume a set of particles, defined by their positions and associated weights {xt, w̌t}.
Without loss of generality, assume that a demonstration or test response is provided at
each time step t. Each demonstration generates multiple constraints by comparing the
demonstration against possible counterfactuals and each incorrectly answered test will
generate a single constraint by comparing the true test answer against the incorrect
answer, both through Eq. 4.4. Each constraint generated via a demonstration or
a test response is a half-space constraint, with one side being consistent with the
demonstration or test response and the other side being inconsistent.

Each constraint yt can then be translated into a probability distribution p(xt|yt)
that can be used to update the weights of each particle (Fig. 6.3). We propose
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Figure 6.3: Example sequence on how a demonstration updates a particle filter
model of human beliefs. The robot reward function is shown as a red dot, and the
constraint consistent with the demonstration is shown in all plots for reference. (a)
Particles before demonstration (prior). (b) Demonstration shown to human. (c)
The constraint (Eq. 4.4) consistent with the demonstration that conveys that mud
must be at least twice as costly as an action, visualized with the uniform distribution
portion of the custom distribution (Fig. 6.4) used to update particle weights. (d)
Particles after demonstration (posterior).

a custom probability distribution p(xt|yt) that translates each constraint into a
combination of a uniform distribution that aligns with the consistent half-space of
the constraint and a von Mises-Fisher distribution (a generalization of the Gaussian
distribution on a sphere) [18] whose mean direction aligns with the inconsistent
half-space (Fig. 6.4). The uniform distribution asserts that any particle lying on
the consistent half-space is equally valid for that demonstration, whereas the Von-
Mises Fisher distribution asserts that a particle is exponentially less likely to have
generated that demonstration as you move away from the constraint. The resulting
probability density function (pdf) of the custom distribution is given in Eq. 6.1, with
the normalizing constant c1 that ensures that the pdf sums to 1 (Eq. 6.2), and the
scaling constant c2 that matches the probability of the Von-Mises Fisher distribution
to that of the uniform distribution at meeting point of the two distributions (Eq. 6.3).
Though the custom distribution naturally generalizes to high dimensions, the pdf in
Eqs. 6.1 – 6.3 is specified for the 2-sphere for simplicity. In our experiments, we set
the concentration parameter κ of the Von-Mises Fisher distribution to be 2, which we
empirically observed as providing the right signal-to-noise ratio during the particle
weight updates (κ = 0 corresponds to the uniform distribution and the distribution
becomes more peaked around the mean, and less noisy, as κ increases).
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Figure 6.4: Cross-section of the spherical probability density function used to update
particle weights given a constraint generated from a demonstration.

f (x, µ, κ) =


1

2πc1
, µ⊤x ≥ 0

c2κeκµ⊤x

2c1π(eκ−e−κ), µ⊤x < 0
(6.1)

c1 = 1

c2
∫ π

0

∫ 3π
2

π
2

κeκcos(θ)·sin(ϕ)sin(ϕ)
2π(eκ − e−κ)

dθdϕ + 0.5
(6.2)

c2 = 1
4πf (y, µ, κ)

, ∀y s.t. µ⊤y = 0 (6.3)

Sampling Human Beliefs

Given a running particle filter model, we may sample human beliefs in order to
do counterfactual reasoning. We first run systematic resampling on a copy of the
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Figure 6.5: Human counterfactuals are generated by sampling beliefs from the particle
filter model. As nearby particles are likely to generate similar counterfactuals, we
rely on the 2-approximation algorithm for the k-center problem to sample k beliefs
(marked by red crosses) that are spread out.

particles to downselect to a candidate set (not affecting the original particle filter),
accounting for the differences in the weights of the particles and favoring those that
are higher weighted. We then rely on the 2-approximation algorithm [33] to greedily
select k distributed samples such that the maximum distance from any particle in
the candidate set to one of the k samples is minimized. The algorithm iteratively
picks the particle with the largest distance to the already selected samples as the next
sample; this heuristic ensures that the maximum distance from any particle to any
of the selected samples is never worse than twice the optimal. As nearby particles
are likely to generate similar counterfactuals, we wish to sample beliefs that are
approximately spread out. And as we do not require an optimal coverage of the belief
space, this algorithm provides an efficient sampling method. For our experiments, we
set k to be 25. To support real-time counterfactual reasoning, we also sampled 2500
beliefs from the surface of the 2-sphere (the space of possible human beliefs regarding
the agent’s reward function) for which we pre-computed the optimal policy. Each
particle in the particle filter was then mapped to the closest pre-computed belief
during experiments toward efficient selection of additional demonstrations and tests.
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Resampling and Resetting the Particle Filter

We address common challenges to using particle filters in practice. Sample degeneracy
occurs when successive updates to the weights of the particles cause only a few particles
to have high weight and the particle filter fails to model regions of interest in the
posterior with sufficient detail [58]. Furthermore, the number of particles (i.e. sample
size) should adapt to the complexity of the distribution being modeled. To address
both concerns, we rely on KLD-resampling [57] to obtain the sample size that bounds
the Kullback-Leibler (KL) divergence between the sample-based maximum likelihood
estimate and the true posterior distribution, and simultaneously rely on systematic
resampling to concentrate the sampling near regions of high probability. Finally,
measures to combat sample degeneracy can actually cause sample impoverishment,
where the particle filter is too concentrated and not amenable to future shifts in the
posterior. Thus we resample only when the effective sample size (a measure of sample
degeneracy) drops below a predefined threshold and also add Gaussian noise when
resampling the particles [58]. This limited resampling balances the risk of running
into sample degeneracy or sample impoverishment, which are at opposite extremes.

The particle filter may converge, then suddenly obtain new information that
is heavily inconsistent with the current distribution (Fig. 6.6). In this case, the
filter will struggle to update, as none or very few of the particle weights would
be increased to shift the distribution in a meaningful way. We thus implement
particle filter resetting, taking inspiration from sensor resetting localization [54] that
combats the kidnapped robot problem, where the robot has been moved without
being told and must reinitialize its localization. Our particle filter resetting triggers
when the weights of the particles, after accounting for p(xt|yt) and before weight
normalization (line 10 of Alg. 4), drop below a threshold. We uniformly distribute
a set number of particles into the consistent half-space (Fig. 6.6b) and again rely
on KLD-resampling [57] to obtain the number of particles that will bound the KL
divergence between the posterior distribution following the reset and its sample-based
maximum likelihood estimate. We then sample that number of particles directly from
the custom distribution corresponding to p(xt|yt) and add it to the particle filter.
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Figure 6.6: When a test response is heavily inconsistent with the current model of
human beliefs, we perform a reset (Section 6.1). The constraint consistent with the
test response is shown in all panels, with the consistent side shown with the uniform
distribution as a yellow dome in the center panel. The robot reward function is shown
as a red dot.

Algorithm 5 Closed-loop Teaching Framework
1: Group related knowledge components (KC) into batches using counterfactual scaffolding
2: for each batch of KCs (i.e. lesson) do
3: Provide initial demonstrations and diagnostic tests
4: Evaluate diagnostic test responses
5: if diagnostic test responses are incorrect then
6: Provide corrective feedback, remedial demo, and a remedial test
7: Evaluate remedial test response
8: while remedial test response is incorrect do
9: Provide corrective feedback and provide new remedial test

10: Evaluate remedial test response
11: end while
12: end if
13: end for

Closed-loop Teaching

With a particle filter model of human beliefs that is amenable to iterative updates
via demonstrations and tests, we now formulate a closed-loop teaching framework for
conveying a robot’s reward function to a human. As we walk through the framework
that is visualized in Fig. 6.7, we highlight the principles from the education literature
that guide the design. A sample rollout of a teaching sequence is shown in Fig. 6.8,
which may serve as a visual correspondence to the overview of the framework that is
provided in Alg. 5.

We first leverage feature and counterfactual scaffolding from our prior work 5 to
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Figure 6.7: Proposed closed-loop teaching framework. A group of related knowledge
components (KCs) are passed to the robot teacher as a lesson. The demonstrator
generates demonstrations that convey the KCs, the tester provides test(s), and the
evaluator analyzes the test response(s), provides feedback on its correctness, and
updates the model of human knowledge. If the human fails to learn a KC through two
rounds of demonstrations and tests, the switch (labeled ‘S’) flips such that only tests
and feedback are provided until understanding of the remaining KCs is demonstrated
through correct responses.

select KCs that incrementally increase in information across an increasing subset of
features (e.g. mud vs action cost, recharging vs action cost, then tradeoffs between
all three). This set of KCs guides the machine teaching-selection of the curriculum
of demonstrations that can be used to teach the robot reward function to a human,
where each demonstration is selected to convey a single KC whenever possible.

We begin the loop by taking a single batch of related KCs that define a lesson
(e.g. the upper and lower bound on mud cost) and providing it to the demonstrator
(Fig. 6.7) to select demonstrations from the curriculum that convey these KCs
that belong in this lesson. Specifically, we utilize counterfactual reasoning [53] to
select demonstrations that are informative with respect to the counterfactuals likely
considered by the human. We simultaneously leverage the educational principles
of the ZPD [91] to provide a sequence of demonstrations that provide information
incrementally, i.e. demonstrations that convey one new KC (i.e. constraint) at a time
(such as a lower-bound then an upper-bound on mud cost).

After all of the demonstrations in this lesson have been provided, the tester
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selects diagnostic tests that will verify whether the human has learned all of the
KCs in the lesson. These diagnostic tests optimize for visual dissimilarity from the
teaching demonstrations and visual complexity (i.e. increasing distracting visual
clutter) [53] to challenge the learner.

For each diagnostic test that is answered incorrectly, the evaluator will provide
immediate feedback to the human on how their answer differed from the correct
one, inspired by findings that immediate feedback on errors leads to better learning
outcomes [44]. And for each diagnostic test that is answered incorrectly, a remedial
demonstration that most closely conveys the missed KC with visual simplicity [51] will
be provided to focus on the concept being taught, along with a remedial test with visual
complexity to challenge the learner in demonstrating the missed KC. We note that this
missed KC is determined by comparing the human’s test answer with the optimal test
answer; while it may or may not be the same as one of the KCs originally contained
in the lesson, it addresses the human’s current misunderstanding. If the human
also gets the remedial test wrong, the switch in Fig. 6.7 (labeled ‘S’) flips and the
tester and evaluator will continue to provide only visually dissimilar and complex
remedial tests with corresponding feedback (but no additional demonstrations) until
the human shows understanding of each iteration’s missed KC. This is motivated by
the testing effect [79], which supports using tests not only for assessment but also
for teaching and increasing learning outcomes. Note that for each demonstration
provided or test response received throughout this learning process, we update the
particle filter model of the human’s beliefs. And we utilize the particle filter model
to consider the counterfactuals the human is likely to consider for each potential
remedial demonstration or remedial test in order to select the one that will best
convey or test the missed KC for the human. Once all of the missed KCs for this
lesson have been demonstrated via correct remedial test responses, a fresh batch of
KCs (i.e. a new lesson) is pulled from the KC bank and the switch flips upward to
provide demonstrations again.

Alternatively, if all diagnostic tests in this lesson had been correctly answered
initially, a fresh batch of KCs would have been pulled from the KC bank to begin the
next lesson directly without remedial instruction.

To illustrate the utility of our closed-loop teaching framework, consider a robot that
makes its reward function and subsequent policy more transparent to a human using
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Figure 6.8: Sample teaching sequence for a batch of KCs on mud cost. (a) First
demonstration (green) contrasts with a counterfactual alternative likely considered
by a human (orange), which conveys that mud is costly. (b) Second demonstration
lowerbounds mud cost. (c) Human is asked to predict the robot’s behavior in a
test. (d) Incorrect response suggests that the demonstration was not understood.
(e) Human is given the correct response as feedback. (f) Remedial demonstration is
provided to target the misunderstanding. (g) Human is given a remedial test. (h)
Correct answer suggests understanding.

demonstrations, tests, and feedback accordingly (Fig. 6.8). The robot’s objective
is to deliver a package to the destination, whose reward function balances traveling
through difficult terrain, like mud, and reducing the overall number of actions it takes
(i.e. steps). To convey its reward function, the robot first provides a human with the
demonstration in Fig. 6.8a. Because the robot takes a two-action detour to avoid the
mud instead of going through it, the human may infer that the robot associates mud
with a negative reward.

The robot considers what to demonstrate next to convey more information regard-
ing its reward function. Importantly, it knows that the human likely knows that mud
is costly from the first demonstration, but does not know how costly. For instance,
the human may counterfactually believe that the robot would take a four-action
detour when faced with two mud patches (Fig. 6.8b). However, the robot knows
that its ratio of mud to action reward is -3 to -1 and that consequently, it would
simply go through the mud in Fig. 6.8b to maximize its reward. Seeing how its
direct path meaningfully differs from the human’s likely detouring counterfactual (i.e.
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an alternative, potentially suboptimal behavior), the robot considers this to be an
informative next demonstration to provide – it aims for the ZPD as it provides a
meaningful yet incremental update to the human belief through an additional KC
that upper-bounds the cost of mud.

The robot then follows the two demonstrations with a diagnostic test that simul-
taneously challenges the human to apply their learned knowledge and reveals whether
the robot’s current model of the human’s beliefs must be corrected (Fig. 6.8c). If the
human answers incorrectly, the robot may provide feedback, a remedial demonstration,
and then a sequence of remedial tests and feedback until the human demonstrates
concept mastery, inspired by the testing effect (Fig. 6.8e-h). Importantly, the robot
continues to update its model of the human’s beliefs according to the test answer
and throughout the remedial interactions to consider the right counterfactuals when
estimating the information gain of demonstrations that could be provided next.

When all lessons have been taught, the human’s knowledge can be evaluated
via their performance on a held-out set of tests in which they predict the policy in
previously unseen scenarios.

6.2 User Study

We ran an online user study1 exploring whether our proposed closed-loop teaching
method improves the transparency of a robot’s policy to a human. The study involved
participants learning about the robot policy in two domains through a combination
of demonstrations, tests, and feedback and predicting the robot’s behavior in new
test environments.

Study Design

The within-subject variable was domain, which consisted of the following two con-
ditions. In the delivery domain, the robot is penalized for moving out of mud and
rewarded for recharging. In the skateboard domain, the robot is rewarded each
time it moves with the skateboard (e.g. riding is efficient) or traverses through a

1Code for the methods, domains, and relevant hyper-parameters used in this study can be found
at https://github.com/SUCCESS-MURI/closed loop teaching study.
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Figure 6.9: Two domains designed for user study, (a) delivery, (b) skateboard. The
semantics of the objects were hidden using arbitrary shapes and colors.

designated path (see Fig. 6.9). Thus each domain consists of two unique reward
features and one shared feature that penalizes each action. The skateboard domain
was explicitly designed to be more challenging than the delivery domain (confirmed
through pilot studies), as the value of the skateboard depends both on the distance
to the skateboard and subsequent distance to the goal. The order of the domains in
the study was counterbalanced.

The between-subjects variable was feedback loop with the following three conditions.
Open feedback loop followed our prior work [53] in selecting a set of informative
demonstrations a priori using counterfactual reasoning that incrementally decreased
in BEC area, one KC at a time. Partial feedback loop additionally provided a
diagnostic test after each lesson and provided feedback as necessary, while the full
feedback loop additionally provided a remedial demonstration and remedial tests until
the KC in question was correctly applied in a remedial test. For a fair comparison,
each condition showed the same median number of demonstrations and tests (11 for
delivery and 22 for skateboard)2.

The user study consisted of two trials, with each trial comprising a teaching portion
and a testing portion in one domain. During teaching, participants were first explicitly
informed of the reward features of the domain. Then they inferred the corresponding

2Participants in the full feedback loop condition could receive a variable number of remedial
demonstrations and tests, so we ran this condition first to determine the median number of
demonstrations and tests for the other two conditions.
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reward weights by watching demonstrations and perhaps diagnostic tests, corrective
feedback, and further remedial instruction depending on their assigned feedback loop
condition. For every interaction, participants responded to whether it improved their
understanding of the policy. At the end of the teaching session, participants were
asked to rate their level of attention, the usability of their assigned teaching condition,
and their understanding of the policy. For testing, participants were tasked with
predicting the robot’s optimal trajectory in six unseen test environments in random
order, which were selected according to prior work [53] to comprise two low, medium,
and high difficulty environments each.

Hypotheses

H1: (a) The test responses will be best for full feedback loop, then partial, then open.
(b) Delivery will result in better test responses over skateboard.

H2: (a) Focused attention and perceived usability will be highest for full feedback
loop, then partial, then open. (b) Delivery will result in higher focused attention and
perceived usability over skateboard.

H3: (a) Improvement ratings will be highest for full feedback loop, then partial,
then open. (b) Delivery will result in higher improvement ratings over skateboard.

H4: (a) Understanding ratings will be highest for full feedback loop, then partial,
then open. (b) Delivery will result in higher understanding ratings over skateboard.

Measures

The following objective and subjective measures were recorded to evaluate the afore-
mentioned hypotheses. The Likert scales corresponding to M2 and M4 were provided
after the teaching portion but before the testing portion, and Likert scales corre-
sponding to M3 were provided after each demonstration and test in the teaching
portion.
M1. Test response: The reward of the human’s test response, measuring the
human’s ability to predict the policy.
M2. Focused attention and perceived usability: We adapted the User Engage-
ment Scale short form [69] to ask three questions targeting focused attention:
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• “I was fully engaged with learning the game strategy.”
• “The time I spent learning the game strategy passed by quickly.”
• “I was absorbed in this experience.”

and three questions targeting perceived usability:

• “I felt frustrated while learning the game strategy.”
• “I found learning the game strategy confusing.”
• “Learning the game strategy was taxing.”

each answered with a 5-point Likert scale.
M3. Improvement: “Did this interaction improve your understanding of the game
strategy [robot policy]?”, answered with a 5-point Likert scale.
M4. Understanding: “Do you feel that you now understand the game strategy?”,
answered with a 5-point Likert scale.

Test response (M1) relates to the ‘optimal response’ measure in the previous
user studies, which measures the human’s ability to predict the policy. Improvement
(M3) relates to the (demonstration) ’informativeness rating’ measure in previous
user studies, but the former is asked after each interaction (as opposed to once at
the end of the teaching session) and further focuses on increases with respect to
the participant’s current understanding. The perceived usability (M2) mirrors the
‘mental effort’ rating in previous user studies but uses a validated scale, and attention
(M2) aims to measure the ability of the closed-loop teaching framework to engage
the learner. Finally, understanding (M4) aims to measure the participant’s perceived
subjective level of understanding and contrast it with their objective ability to predict
agent behavior (M1).

6.3 Results

We collected data from 206 participants using Prolific. Participants were roughly
70% male, 28% female, 1% non-binary, and 1% preferred not to disclose, and ages
varied from 18 to 67 (M = 32.49, SD = 11.15). The recruitment process and study
was approved by Carnegie Mellon University’s Institutional Review Board. In the full
feedback loop condition, we removed data from one participant who did not miss any

80



6. Closing the Teaching Loop with in situ Demonstration Selection

diagnostic tests during teaching (thus did not see any remedial instruction in either
domain), and one outlier participant whose total number of interactions exceeded 3
standard deviations of the mean number of interactions in this condition (as repeated
failures of similar remedial tests suggested lack of attention). This left 68 participants
in each between-subjects condition.

H1: We considered analyzing test responses in two ways: binary scores mea-
suring the optimality of human test responses, and regret measuring the degree of
suboptimality of human test responses (i.e. the difference between rewards of human
and optimal test responses). The former analysis was coarse and did not yield any
significant results, so we opted for the latter which provides a finer resolution. We also
considered normalizing the regret by the optimal test response but decided against
it to prevent identical mistakes from being penalized differently based on different
trajectory lengths and optimal rewards (please find further elaboration in Section 6.4).
A two-way mixed ANOVA indicated a significant effect of feedback loop on regret
(F (2, 201) = 3.65, p = .028)3. Tukey analyses revealed that full (M = 0.24) had 43%
lower regret over open (M = 0.42, p = .027), with partial sitting in between with no
significant difference to either (M = 0.29, Fig. 6.10a). The ANOVA also indicated
a significant effect of domain on regret (F (1, 201) = 50.75, p ≤ .001), where a t-test
revealed a significant difference between the regret between delivery (M = 0.18) and
skateboard (M = 0.45), t(406) = −5.792, p < .001.

The ANOVA also indicated an interaction effect (F (2, 201) = 3.45, p = .03)
between feedback loop and domain. In the skateboard domain, Tukey analyses
revealed that full (M = 0.33) had significantly lower regret over open (M = 0.62,
p = .014),

H1a is partially supported. Though the regret for partial sat in between full
and open as expected (being an intermediary between those two levels), it was not
significantly different from either. However, full did indeed significantly outperform
open. The interaction effect reveals that the difference between full and open on
regret is driven by the skateboard domain, suggesting perhaps that the benefit of the
proposed fully closed-loop teaching scheme is greater for more challenging domains.

3Though one participant had only 11/12 test responses recorded, we note that this does not
significantly impact the reported results as responses were averaged for each participant and 2447
total test responses were recorded.
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H1b is supported. Delivery resulted in a significantly lower regret over skateboard, as
expected.

H2: We ran a Cronbach’s alpha to verify the reliability of the corresponding
Likert scales for measuring focused attention and perceived usability. For focused
attention, we observed that the value rose from α = 0.58 to α = 0.65 without the
second item (which asked for a response to the question “The time I spent learning the
game strategy passed by quickly.” on a 5-point scale) and we remove this item from
the analysis accordingly. For perceived usability, we keep all items for the analysis
below as removing any of them did not increase the α = 0.86 that was obtained using
all items.

A two-way mixed ANOVA did not find a significant effect of feedback loop
(F (2, 201) = 1.56, p = 0.21), nor domain (F (1, 201) = 0.38, p = .54) on focused
attention, nor an interaction effect between feedback loop and domain on focused
attention (F (2, 201) = 1.90, p = .15). A two-way mixed ANOVA found a significant
effect of domain on perceived usability (F (1, 201) = 85.77, p < .001). A t-test revealed
a significant difference in the perceived usability ratings of delivery (M = 3.57)
and skateboard (M = 2.89), t(406) = 6.562, p < .001. Finally, a two-way mixed
ANOVA also found an interaction effect between feedback loop and domain on
perceived usability (F (2, 201) = 6.17, p = .003), where Tukey revealed a significant
difference between partial (M = 2.64) and open (M = 3.21) for skateboard (p = .006,
Fig. 6.10b). A main effect of feedback loop on perceived usability was not found
(F (2, 201) = 2.06, p = .13).

H2a is not supported. Though no main effects were found for feedback loop on
focused attention or perceived usability, the interactions effects on the skateboard
domain reveal that partial feedback loop is less usable than open loop. H2b is
partially supported. The trend of the domain differences continues with delivery
yielding significantly higher ratings of perceived usability over skateboard, though no
difference was found between the domains for focused attention.

H3: As participants gave an improvement rating for each interaction (e.g.
demonstration, feedback, etc), a mean is more descriptive than a median for each
participant and for each domain and we use parametric analyses accordingly. A
two-way mixed ANOVA indicated a significant effect of domain on improvement
(F (1, 201) = 32.17, p < .001). A t-test revealed that the teaching in delivery
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Figure 6.10: (a) Full closed-loop teaching yields lower regret for human tests responses
than open across domains (lower is better). (b) Partial yields lower ratings on
perceived usability (higher is better) than open in the skateboard domain. Error bars
indicate 95% confidence intervals.

(M = 3.38) was rated to yield higher improvement than in skateboard (M = 3.12),
t(406) = 3.001, p = .003). The ANOVA did not indicate a significant effect
of feedback loop (F (2, 201) = 1.54, p = .22) nor a significant interaction effect
(F (2, 201) = 1.23, p = .29) between feedback loop and domain.

H3a is not supported. Feedback loop did not impact ratings of improvement. H3b
is supported. The ratings suggest that participants learned more overall about the
delivery domain than the skateboard domain.

H4: A Kruskal-Wallis H test did not reveal a statistically significant effect of
feedback loop on ratings of understanding (p = .41). However, a Wilcoxon signed-rank
test showed a statistically significant change in ratings of understanding between
delivery and skateboard domains (Z = −6.474, p < .001). Though the median ratings
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on understanding of both domains were 4, the mean for delivery was 3.90 and the
mean for skateboard was 3.34.

H4a is not supported. Feedback loop did not impact ratings of understanding. H4b
is supported. The ratings support a difference in the difficulty of the two domains.

Finally, as an exploratory measure, we asked participants at the end of each
domain in the user study (having gone through the respective teaching and testing
portions) to provide their best guess as to the weights of the domain’s reward features.
We evaluated whether the signs of each of the weights were correct as a coarse,
first-pass analysis, which can be found in Table 6.1. Note that not every participant
had reward weight estimates recorded due to technical difficulties in collecting this
exploratory measure.

Table 6.1: Correctness of the signs of reward weight estimates from participants

Taxi Domain Skateboard Domain
Correct Incorrect Correct Incorrect

Open loop 34 32 36 30
Partial closed loop 37 31 34 32
Full closed loop 40 28 37 31

6.4 Discussion

The primary hypothesis of the user study, H1a, was partially supported with full
closed-loop teaching leading to a significantly lower regret in human test responses
over open loop teaching. As partial closed-loop was explicitly designed to incorpo-
rate only a subset of full’s framework (i.e. diagnostic tests and feedback, but not
additional remedial demonstrations or tests), it predictably led to regret that sat in
between full and open without significant difference to either. Importantly, the three
aforementioned conditions each provided the same median number of interactions
(where each demonstration or test counts as one interaction), highlighting that the
content and the interaction type matter in instruction. Full closed-loop teaching
was designed to detect misunderstandings in human’s beliefs using diagnostic tests,
then address the misunderstanding with tailored remedial demonstrations and tests
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until the human exhibits understanding through a correct test response. Open loop
teaching does not provide real-time tailoring of instruction, and partial only provides
a diagnosis of potential misunderstanding and shallow remediation through quick
feedback.

Not too surprisingly, results indicated a clear difference between the two domains
across all measures except focused attention (as they were designed to vary in difficulty
– see Chapter 7 for a more in-depth discussion). Interestingly, there were interaction
effects driven by domain. The results show that the significant improvement in
objective learning outcomes from full closed-loop teaching over open comes primarily
from the skateboard domain. However, full but isn’t simultaneously able to significantly
improve usability over open. Again, we see hints of the dual nature of effective learning
that requires mental effort to continuously update one’s knowledge (note that the
usability questions in this study address a similar construct to mental effort). Indeed,
one person in the full condition said the following in response to the open-ended
question at the conclusion of the study, “Do you have any general comments or
feedback on the study? Is there anything you wish [the agent] would’ve done to help
you understand the game strategies better?”

“I found it a little confusing. Each time I thought I understood the best
strategy I was proved wrong. Nothing more [the agent] could have done
except give more examples. More examples and more practice might have
helped.”

Full closed-loop teaching employs the counterfactual scaffolding technique from the
previous chapter to explicitly select demonstrations that the human does not expect
to provide maximum information. While we detect when the human has failed to
successfully incorporate knowledge from counterfactual scaffolding demonstrations
and remedy with remedial demonstrations and tests, these initial demonstrations can
understandably be challenging to grasp. A closed-loop teaching scheme is thus critical
for keeping the human learner in the zone of proximal development with intermittent
testing, feedback, and target instruction.

Interestingly, we also saw another interaction effect where partial loop teaching
is rated significantly less usable than open in the skateboard domain. A number of
people in partial noted that they wanted more demonstrations to clear up confusion,
e.g. saying “the strategy on the first game somewhat confused me. Maybe if
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there were more demonstrations it would be easier to understand its strategy.” We
hypothesize that perhaps it can be frustrating to have diagnostic tests highlight gaps
in understanding without providing further instruction (as in the case of full) or not
highlight potential gaps in understanding at all and provide additional instruction
instead (as in the case of open).

We also considered analyzing H1 using normalized regret as previously mentioned
in Section 6.3. In debating whether to analyze participant test responses using regret
or normalized regret, we observed a key tradeoff between the two metrics that is
highlighted in Fig. 6.11. While normalizing regret by the reward of the optimal
trajectory allows for a fairer comparison between tests of different domains (each
with its own unique reward function), it also necessarily scales the reward of each
individual error according to the reward of the optimal trajectory. For example, while
one may argue that the suboptimal test responses that go through mud in Fig 6.11a
and Fig 6.11b are qualitatively the same and should be penalized the same (indeed
the regret for both trajectories is 0.64), the normalized regrets are different. The
normalized regret for Fig 6.11a is 0.60 while the normalized regret for Fig 6.11b is
only 0.43, as mistakenly going through mud comprises a smaller portion of the longer
overall trajectory in Fig 6.11b. We note that there are merits to each measure and
advise selecting one over the other depending on context. For instance, a 10-minute
detour in a five-hour trip to a conference is negligible, but the same detour for a
daily commute from the hotel to the conference that should only take 10 minutes is
arguably worse and better captured by normalized regret (regret would be the same).
In this thesis, we are instead interested in measuring how much someone has learned
and thus each mistake should arguably be penalized the same, regardless of whether
it is made once in a shorter trajectory or once in a longer. We thus opt for regret.
Interestingly, none of the significant findings change for H1 when moving from one
form of regret to the other – no new results are added nor taken away. This may be
because the sizes of our domains were similar (the delivery and skateboard domains
consisted of 10 and 24 grid squares respectively) and resulted in reward feature counts
of the same magnitude. Furthermore, the reward feature weights were l2-normalized
such that each weight lay between 0 and 1. For domains of vastly different reward
feature counts and reward weights may subsequently lead to vastly different regret
and we suggest normalization for fairer comparison across domains.
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Figure 6.11: Two scenarios exemplifying the difference between regret and normal-
ized regret, where optimal and suboptimal trajectories are shown in green and red
respectively. The regret in both scenarios is 0.64, but normalized regret is 0.60 in (a)
and 0.43 in (b).

Finally, the results of asking participants to guess the weights of the reward
features in each domain surprised us (see Table 6.1). While there were always more,
or at least as many, correct answers as incorrect answers, the number of incorrect
answers was higher than expected even as we only considered the sign of the weights
and not the magnitude. As we’ll discuss further in Chapter 7, this further points to
humans not likely performing inverse reinforcement learning (IRL) algorithmically
as we model in this thesis. Furthermore, the proportion of correct answers increases
from open, to partial, to full in order of decreasing regret for delivery, but not so for
skateboard. As we alluded to earlier in Chapter 4, the more difficult and complex
domain may have encouraged participants to utilize a more imitation-based learning
style than IRL-based learning style.

6.5 Comparing Demonstrations with Direct Re-
ward Explanations

While this thesis has focused so far on reward explanations in the form of demonstra-
tions, they can take other forms. e.g. conveying direct weights of reward features,
saliency maps highlighting where the agent is attending to, and reward decomposition
bars that group future rewards into semantically meaningful categories [9, 82].

Interestingly, Sanneman and Shah [82] found that communicating weights of reward
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features directly performed the best objectively and subjectively in their two domains
(waypoints and grid world), compared with Highlights, a policy summarization
technique that communicates the reward function via demonstrations from states
with maximal difference between the Q-values for the best and worst actions [5].

We wondered whether direct reward explanations would also outperform our
closed-loop teaching method in our domains, and also whether there would be synergy
in conveying both. We thus ran an online user study exploring whether direct reward
explanations improve the transparency of agent policies in the grid world domains
considered in this thesis.

Study Design

Most of the details of this user study carried over from the previous user study in
6.2. The within-subject variable was again domain, which consisted of the same two
conditions as the user study on feedback loop: delivery and skateboard.

The between-subjects variable was explanation type with the following three
conditions.

• Direct reward followed the methodology of [82] and directly provided the
numerical reward weights to the participant in a bar graph (we also provided
the numerical values).

• Full implemented the full closed-loop teaching framework as described earlier
in this chapter as a baseline.

• Joint provided both direct reward information via bar graphs and numerical
values, as well as the full closed-loop teaching framework.

The user study consisted of two trials, with each trial comprising a teaching
portion and a testing portion in one domain. During teaching, participants were first
explicitly informed of the reward features of the domain through an informational
page. In the direct reward or joint conditions, the participants were also provided the
corresponding reward weights in bar graph form as well as explicit numerical values on
this informational page. For these two conditions, the numerical values of the reward
weights were provided on every subsequent page (e.g. alongside demonstrations and
tests) to remove the confound of memory. Participants in the direct reward condition
then moved straight from the informational page on reward weights and features
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(which comprised the teaching portion) to a page of Likert items that queried their level
of attention, the usability of their assigned teaching condition, and their subsequent
understanding of the policy to close out their teaching portion. Participants in
the full and joint conditions were provided demonstrations and perhaps diagnostic
tests, corrective feedback, and further remedial instruction as necessary. For every
interaction, participants also responded to whether it improved their understanding
of the policy. Participants in the full and joint conditions also followed up their
teaching portion by responding to Likert items that queried their level of attention,
the usability of their assigned teaching condition, and their subsequent understanding
of the policy to close out their teaching portion.

Following the teaching portion, participants in all conditions proceeded to the
testing portion where they predicted the robot’s optimal trajectory in six unseen test
environments in random order, which were selected according to prior work [53] to
comprise two low, medium, and high difficulty environments each.

Hypotheses

H1: (a) The test responses will be best for joint, then full, then direct reward. (b)
Delivery will result in better test responses over skateboard.

H2: (a) Focused attention will be highest for joint, then direct reward, then full.
Perceived usability will be highest for direct reward, then joint, then full. (b) Delivery
will result in higher focused attention and perceived usability over skateboard.

H3: (a) Improvement ratings will be highest for joint, then full (no improvement
ratings were queried for direct reward). (b) Delivery will result in higher improvement
ratings over skateboard.

H4: (a) Understanding ratings will be highest for joint, then full, then direct
reward. (b) Delivery will result in higher understanding ratings over skateboard.

Measures

The following objective and subjective measures were recorded to evaluate the afore-
mentioned hypotheses (all measures are shared with the previous user study in 6.2
but are repeated here for convenience). The Likert scales corresponding to M2 and
M4 were provided after the teaching portion but before the testing portion, and Likert
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scales corresponding to M3 were provided after each demonstration and test in the
teaching portion.
M1. Test response: The reward of the human’s test response, measuring the
human’s ability to predict the policy.
M2. Focused attention and perceived usability: We adapted the User Engage-
ment Scale short form [69] to ask three questions targeting focused attention:

• “I was fully engaged with learning the game strategy.”
• “The time I spent learning the game strategy passed by quickly.”
• “I was absorbed in this experience.”

and three questions targeting perceived usability:
• “I felt frustrated while learning the game strategy.”
• “I found learning the game strategy confusing.”
• “Learning the game strategy was taxing.”

each answered with a 5-point Likert scale.
M3. Improvement: “Did this interaction improve your understanding of the game
strategy [robot policy]?”, answered with a 5-point Likert scale.
M4. Understanding: “Do you feel that you now understand the game strategy?”,
answered with a 5-point Likert scale.

Results

We collected data from 204 participants using Prolific. Participants were roughly 72%
male, 26% female, 1% non-binary, and 1% preferred not to disclose, and ages varied
from 18 to 67 (M = 31.54, SD = 9.68). The recruitment process and study were
approved by Carnegie Mellon University’s Institutional Review Board. 68 participants
were randomly assigned to each of the three between-subjects conditions and the
order of the domains in the study was counterbalanced.

H1: Consistent with the previous user study, we analyze participant test responses
using regret (i.e. the difference between rewards of human and optimal test response).
A two-way mixed ANOVA indicated a significant effect of feedback loop on regret
(F (2, 201) = 23.72, p < .001). Tukey analyses revealed that both joint (M = 0.22)
and full (M = 0.24) had significantly lower regret compared to direct reward (M =
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Figure 6.12: (a) Direct reward leads to significantly higher regret in human test
responses compared to full and joint. (b-c) The gap between the regret from direct
reward and the other explanation types is notably bigger in the skateboard domain
than the delivery domain, where the skateboard was objectively and subjective deemed
by participants to be more challenging.

0.66), with both at p < .001. The ANOVA also indicated a significant effect of
domain on regret (F (1, 201) = 51.62, p < .001), where a t-test revealed a significant
difference between the regret between delivery (M = 0.18) and skateboard (M = 0.57),
t(406) = −6.378, p < .001.

Finally, the ANOVA also indicated an interaction effect (F (2, 201) = 14.65, p <

.001) between explanation type and domain. In the delivery domain, Tukey revealed
that joint (M = 0.12) led to significantly lower regret compared to direct reward
(M = 0.25), at p = .005, while full (M = 0.16) trended toward significantly lower
regret than direct reward at p = .08. In the skateboard domain, Tukey analyses
revealed that both joint (M = 0.32) and full (M = 0.33) had significantly lower
regret compared to direct reward (M = 1.07), with both at p < .001 (Fig. 6.12).
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Table 6.2: Mean regret of human test responses across the five conditions of the two
user studies (lower is better).

Open loop Partial Full closed loop Joint Direct reward
Delivery 0.210 0.162 0.160 0.118 0.254
Skateboard 0.624 0.412 0.328 0.320 1.070

H1a is partially supported. While joint and full each led to significantly lower
regret compared to direct reward, joint did not lead to significantly lower regret with
respect to full as expected. An exploration of interaction effect revealed that the
differences between direct reward and either joint or full are larger in the skateboard
domain, again suggesting an interesting influence of domain that will be further
discussed in the next section. H1b is supported. Delivery resulted in a significantly
lower regret over skateboard, as expected.

A table comparing the mean regret of human test responses across the five
conditions across the two user studies conducted in this chapter is found in Table 6.2.
Of note are direct reward leading to the worst performance in both domains, and
full and joint performing the best (a statistically significant difference was not found
between these two conditions). We provide similar tables comparing the results of
other measures across the two user studies in subsequent analyses.

H2: We ran a Cronbach’s alpha to verify the reliability of the corresponding Likert
scales for measuring focused attention and perceived usability. For focused attention,
we observed that the value again rose from α = 0.61 to α = 0.67 without the second
item (which asked for a response to the question “The time I spent learning the game
strategy passed by quickly.” on a 5-point scale) and we remove this item from the
analysis accordingly. For perceived usability, we keep all items for the analysis below
as removing any of them did not significantly increase the α = 0.85 that was obtained
using all items.

A two-way mixed ANOVA found a significant effect of feedback loop (F (2, 201) =
5.63, p = 0.004) on focused attention. Tukey analyses revealed that joint (M = 4.46)
led to significantly higher ratings over full (M = 4.22) and direct reward (M = 4.16),
at p = .033 and p = .005 respectively. While the ANOVA reported a significant effect
of domain on focused attention (F (1, 201) = 5.11, p = .02), a post hoc t-test revealed
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Table 6.3: Mean focused attention rating across the five conditions of the two user
studies (higher is better).

Open loop Partial Full closed loop Joint Direct reward
Delivery 4.279 4.412 4.272 4.522 4.169
Skateboard 4.309 4.360 4.169 4.397 4.147

that the difference between focused attention ratings in delivery (M = 4.32) and
skateboard (M = 4.24) was not significant, t(406) = 1.349, p = .18. The ANOVA
did not find an interaction effect between explanation type and domain on focused
attention (F (2, 201) = 0.72, p = 0.49).

A two-way mixed ANOVA also found a significant main effect of explanation type
on perceived usability (F (2, 201) = 8.30, p < .001), where Tukey revealed that direct
reward (M = 3.76) led to significantly higher ratings over joint (M = 3.22) and full
(M = 3.25), at p = .001 and p = .002 respectively. The ANOVA also revealed a
significant effect of domain on perceived usability (F (1, 201) = 78.51, p < .001), and
a post hoc t-test revealed that a significant difference between ratings in delivery
(M = 3.70) and skateboard (M = 3.13), t(406) = 5.641, p < .001. Finally, the
ANOVA also found an interaction effect between explanation type and domain on
perceived usability (F (2, 201) = 12.36, p < .001), where Tukey revealed that direct
reward (M = 3.70) led to significantly higher ratings over joint (M = 2.87) and full
(M = 2.82), at p < .001 for both, only for skateboard (no significant differences were
found for the delivery domain – see Fig. 6.13).

H2a is partially supported. Joint resulted in significantly higher focused attention
ratings over full and direct reward as expected. There was no difference in focused
attention ratings between full and direct reward, however. Direct reward resulted
in significantly higher perceived usability ratings over joint and full as expected,
but there was no difference in perceived usability ratings between joint and full.
Interestingly, post hoc analyses of the interaction effect between domain and usability
find that the significant main effects are entirely driven by skateboard. H2b is partially
supported. The trend of the domain differences continues with delivery yielding
significantly higher ratings of perceived usability over skateboard, though no difference
was found between the domains for focused attention.
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Figure 6.13: (a) Direct reward leads to significantly higher ratings of perceived
usability compared to full and joint. (b-c) The main effect is mostly driven by the
skateboard domain.

H3: As participants gave an improvement rating for each interaction in joint and
full (e.g. demonstration, feedback, etc), a mean is more descriptive than a median
for each participant and for each domain and we again use parametric analyses
accordingly4. A two-way mixed ANOVA indicated a significant effect of explanation
type on improvement (F (1, 132) = 11.85, p = .001). A t-test revealed that joint
(M = 3.77) yielded significantly higher ratings on improvement over full (M = 3.23),
t(134) = 3.613, p = 0.001. The ANOVA also indicated a significant effect of domain
on improvement (F (1, 132) = 18.23, p < .001). A t-test revealed that the teaching
in delivery (M = 3.64) was rated to yield higher improvement than in skateboard
(M = 3.43), t(270) = 1.900, p = .058). The ANOVA did not indicate a significant
interaction effect between explanation type and domain (F (1, 134) = 3.36, p = .06).

4Due to technical challenges, the improvement ratings of two out of 68 participants in the joint
condition were not recorded.
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Table 6.4: Mean perceived usability rating across the five conditions of the two user
studies (higher is better).

Open loop Partial Full closed loop Joint Direct reward
Delivery 3.525 3.485 3.686 3.569 3.819
Skateboard 3.211 2.637 2.819 2.873 3.691

Table 6.5: Mean improvement rating across the five conditions of the two user studies
(higher is better).

Open loop Partial Full closed loop Joint Direct reward
Delivery 3.430 3.269 3.440 3.848 N/A
Skateboard 3.270 2.953 3.125 3.729 N/A

H3a is supported. As expected, joint lead to higher ratings on improvement over
full. H3b is supported. The ratings also suggest that participants learned more overall
about the delivery domain than the skateboard domain.

H4: A Kruskal-Wallis H test revealed that full (M = 3.65) yielded significantly
lower ratings of understanding compared to joint (M = 4.19) as well as direct reward
(M = 4.21), at p < .001 for both. A Wilcoxon signed-rank test also showed a statisti-
cally significant change in ratings of understanding between delivery and skateboard
domains (Z = −4.83, p < .001). Though the median ratings on understanding of
both domains were 4, the mean for delivery was 4.17 and the mean for skateboard
was 3.87.

H4a partially supported. While ratings on understanding were higher for joint
over full as expected, ratings on understanding were also higher for direct reward
over full. H4b is supported. The ratings on understanding were higher in delivery
than skateboard as expected.

Table 6.6: Mean understanding rating across the five conditions of the two user
studies (higher is better).

Open loop Partial Full closed loop Joint Direct reward
Delivery 3.809 3.882 4.015 4.353 4.147
Skateboard 3.589 3.147 3.294 4.029 4.279
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Discussion

We first observe that the best reward explanation method is likely domain-dependent,
and we specifically hypothesize that conveying numerical reward weights alone is
increasingly insufficient as an explanation methodology as domain complexity increases.
Not only does direct reward lead to significantly higher regret than joint and full, the
gap is larger in skateboard over delivery – where we consider former domain more
complex than the latter. Domain complexity is difficult to define, but some factors
to consider may be the number of reward features [82], degree of familiarity for the
human [47, 76], the size of the domain, and the degree of interaction between reward
features and the subtleties of the trade-offs amongst reward features afforded by the
reward weights and the (resolution of) the domain. We provide further commentary
on these factors in 7.1.

Second, we observe a potential synergy between different explanation types where
they can help reinforce each other’s information. While we found no difference in
regret, joint has significantly higher ratings on improvement and attention than full.
Interestingly, a few qualitative quotes from the direct reward or full conditions suggest
that participants wanted the information that was not purview to them. In response
to the open-ended question at the conclusion of the study, “Do you have any general
comments or feedback on the study? Is there anything you wish [the agent] would’ve
done to help you understand the game strategies better?”, two participants in the
direct reward condition replied:

“a demonstration instead of written rules might have helped a bit more”

“Maybe an example puzzle with optimal moves demonstrated”

indicating a desire for demonstrations as well. And one participant in the full
condition replied:

“If [the agent] told me the implication of moving into yellow or purple
boxes, it would have helped me a lot.”

indicating a desire for direct information regarding the effect of various reward
features (e.g. perhaps in the form of numerical weights). And people who received
both numerical weights and demonstrations in the joint condition, replied:

“This demonstration reinforced to me the importance of obtaining the
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orange rectangle as moving with it results in a + 0.825% energy change.”

“I already knew to avoid the yellow square, and would have moved the
same way as demonstrated ”

which reveal the dual possibility that different explanation types may be helpfully
reinforcing or unhelpfully redundant. To the latter point, one must be mindful of
cognitive overload when providing too much information at once, which can lead to a
worse understanding of model decision making [74].

And finally, we observe that high self-reports of understanding do not always
translate to corresponding performance. While direct reward led to significantly higher
levels of reported understanding5 over full, as well as significantly high ratings on
usability over full, direct reward also led to significantly worse objective performance.
Our results raise the possibility that people may believe that their knowledge is
sufficient and may terminate learning early (especially since effective learning often
requires significant mental effort as prior results in this thesis have shown), when the
subsequent testing portion will likely reveal significant gaps in their knowledge. All
in all, our results point to a need for a closed-loop, AI-driven teaching that provides
tests and additional instruction as needed to verify the human’s true understanding.
And though our results support AI-driven teaching, Qian and Unhelkar [76] found
that a hybrid strategy where participants could choose between AI-selected and user-
requested examples outperformed only AI-selected examples and was also subjectively
preferred. However, we note that they fixed the teaching budget, and an interesting
direction for future work may be in exploring how to balance AI-driven and user-
driven learning when given a flexible teaching budget setting (e.g. the human may be
feeling unmotivated and wish to terminate learning after a few insufficient examples).

Understandability is a multi-faceted concept that can be difficult to measure
in practice. While the accuracy of a person’s prediction of an agent’s behavior is
arguably the most common sub-measure of understandability (e.g. [9, 35, 48, 82]),
other measures include coding responses to an open-ended question regarding agent
decision making (e.g. [9, 82]), agent preference elicitation and feature sub-selection
[82], and verification of agent response and counterfactual reasoning [48]. Our user

5We note that we queried participants for their perceived understanding right after the conclusion
of the teaching portion of the user study, and before the testing portion. We hypothesize that
perceptions on understanding may have changed when queried after the testing portion.
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studies that queried for participants’ ability to predict agent behavior and our single
Likert-scale item concerning understanding are incomplete measures, and we also
leave how one may query and measure a human’s understanding of agent decision
making more fully for future work.
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As AI systems increasingly abound in society, it is important that their decision
making is transparent, e.g. such that the actions taken by AI are predictable and
understandable to humans. Transparency is critical for not only developers in
reviewing and ensuring proper AI function, but also for end-users in having calibrated
expectations – preventing undertrust and disuse, or overtrust and misuse. And
as humans naturally communicate and comprehend each others’ policies through
demonstrations, this thesis explored increasing the transparency of AI policies through
demonstrations. Furthermore, as human behavior is commonly modeled as being
driven by reward functions, which can be inferred by other humans through reasoning
akin to inverse reinforcement learning (IRL) [37], this collection of work modeled
humans as IRL learners.

Though I borrow from the IRL literature to model human learning from demon-
strations, I note that human learning differs from algorithmic learning in a key way:
humans are limited in their computational capacity and may struggle to under-
stand all the nuanced implications of a demonstration given their current beliefs. In
contrast to the standard paradigm of providing humans with demonstrations that
simply maximize information gain [35, 47, 76], we crucially observe that information
gain and difficulty of understanding are often correlated for humans and thus show
demonstrations that balance the two in an attempt to maximize human learning.
We subsequently leverage ideas and techniques from the education literature, such
as teaching in the zone of proximal development (i.e. engaging at the right level
of information gain and difficulty conditioned on human beliefs) by scaffolding and
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providing targeted instruction in a closed-loop fashion to significantly improve human
learning of agent decision making.

In Chapter 4, we confirmed through a user study that the Set Cover Optimal
Teaching (SCOT) [12] demonstrations with the highest information gain for an IRL
learner ironically led to the poorest learning outcomes in humans (in comparison to
demonstrations with lower information gain) and also were rated least informative
subjectively. Given that humans are not pure IRL learners, we aimed to scaffold
demonstrations such that 1) they incrementally increased in information gain to ease
humans into learning and 2) optimized for visual simplicity and similarity amongst
consecutive demonstrations to highlight meaningful environmental changes that
prompted qualitatively different behavior. We also hypothesized that a behavior’s
information gain as a demonstration during teaching could be inverted into a measure
of the difficulty of predicting that (unseen) behavior in a new situation as a test.
While a user study confirmed the test difficulty measure and that optimizing for
visuals led to increased performance on high difficulty tests, our initial attempt at
scaffolding did not have an effect. In analyzing our results, we noticed that the method
for calculating a demonstration’s information gain failed to account for the human’s
current beliefs and was likely insufficient (e.g. the same demonstration provided to
the human twice in succession would be rated to provide the same information gain).

Thus in Chapter 5, we began to explicitly consider the human’s beliefs during
teaching and testing. We first conditioned the information gain of a demonstration
on whether it would differ from the human’s expectation of agent behavior (i.e.
counterfactual behavior), given the human’s beliefs over the agent’s reward function.
We similarly updated our test difficulty measure as the overlap between the beliefs
of the agent’s potential reward function in the human’s mind and the set of reward
functions consistent with agent behavior, such that smaller overlap correlated with
higher difficulty. A user study once again confirmed our test difficulty measure, and
also provided a more nuanced result for scaffolding teaching demonstrations that
incrementally increased in information gain as measured by counterfactual reasoning.
This scaffolding increased performance for tests targeting later demonstrated concepts
but decreased for early demonstrated concepts, suggesting that we had perhaps moved
too quickly without obtaining real-time feedback.

We addressed the shortcomings of such an open-loop teaching paradigm in Chapter
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6. Though one may generate a curriculum of informative demonstrations a priori,
student learning may deviate in situ. Thus, we leverage tests within a teaching loop
to not only assess human understanding in real time and provide targeted instruction
via feedback and additional demonstrations, but also to teach according to the testing
effect in the education literature. A user study showed that our closed-loop teaching
yielded better learning outcomes over baseline open-loop teaching, yielding lower
regret in human test responses by 43% and also yielding higher usability scores for
one of the two considered domains.

Demonstrations are only one means of improving the transparency of agent policies
and, inspired by results by Sanneman and Shah [82], we also considered how directly
conveying the agent’s underlying reward weights would fare in our domains, both
as a standalone method as well as in conjunction with our closed-loop teaching via
demonstrations. In contrast to their findings, we found that directly conveying the
agent’s reward weights yielded significantly worse human test responses, although it
led to reports of high understanding and usability as an explanation type. However,
providing both reward weights and demonstrations provided synergy that allowed
for high objective and subjective outcomes nearly across the board, highlighting that
different explanation types can provide complementary information that can augment
one another.

Finally, we have defined transparency as understandability and predictability,
borrowing from work by Endsley [23], a leading expert in human situational awareness
involving intelligent agents. One can easily imagine how understandability and
predictability can be correlated to one another – high understanding could improve
predictability through forward simulation, and high predictability could improve
understanding through the generation of data that could support model building.
However, we see that even participants who were given the reward weights explicitly
in the direct reward condition, and they theoretically had all of the information
needed to understand the agent’s decision making (and subsequently rated their
understanding very highly), they struggled to predict the agent’s actions in the
tests. Another study similarly found that providing full details behind an 8-feature
linear regression model of apartment selling prices led participants to be “worst at
simulating the model’s predictions, followed the model’s predictions less, and made
less accurate predictions of the apartments’ selling prices compared to participants
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assigned to the other primary experimental conditions,” including a simplified 2-
feature linear regression model [74]. The authors of the study hypothesize that this
unexpected result (arguably capturing high understanding but low predictability)
likely stemmed from participants experiencing information overload, and we emphasize
that understanding the relationship between understandability and predictability as
a function of domain and task is an important direction for future work.

7.1 Considering Interaction Effects and Confounds
by Domain

The thesis explored the central research question of how to teach through demon-
strations in four total grid world domains. Each domain contained a reward function
that was composed of two unique reward features (e.g. moving out of mud and
recharging) with their respective reward weights and one shared action reward feature
that penalized each action. Though semantics were always hidden through abstract
shapes and the size of each domain was also comparable (ranging from 10 to 25 grid
squares), the intraclass coefficients (ICC) values we computed in Chapters 4 and 5 to
evaluate the consistency of each participant’s performance across domains were low,
which indicated that performance in fact varied considerably across domains for each
participant. However, we averaged over the domains for simplicity of analysis in these
chapters as there were already more critical between and within-subjects variables.

When we analyzed domain in Chapter 6 as a within-subjects variable, we confirmed
that it had a very strong impact on the results. The skateboard and delivery domains
significantly differed on almost all measures, with the skateboard domain rated as
more challenging, both objectively and subjectively. In both user studies in this
chapter, differences in learning outcomes between conditions were largely driven by
the skateboard domain and differences in reported usability among conditions were
significant in one of these two domains. These results first suggest that different
domains call for different teaching methods as we see our contributions having a
greater effect in the more complex skateboard domain. However, we note that learning
often comes at the cost of more mental effort and simpler domains like delivery may
not require as challenging of a teaching regimen. These results secondly suggest that
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we must take care to analyze results from user studies based on domain. Significant
findings may not transfer across domains. Furthermore, exploratory post-hoc analyses
of some of the key findings in Chapters 4 and 5 are also domain-dependent, only
holding for one of the three possible domains and providing further evidence for a
domain-specific analysis.

Finally, characterizing a domain toward inferring when results will transfer is an
open but important question. Domain complexity is difficult to define and Sanneman
and Shah [82] offer a definition for the related concept of reward complexity as the
number of features that comprise the reward function. Though the number of reward
features is a reasonable starting point for domain complexity, our observations suggest
that one must also consider the degree of interaction between features and also the
subtleties of the tradeoffs that result from the reward features. Though we do not test
this in our user study, another consideration when considering domain complexity
could be the degree of familiarity. As Qian and Unhelkar [76] note, their navigation
domain had a much smaller state space of 400 over other domains that had a state
space of 3,200 and 80,000 but it was the most challenging for their participants due
to some of the navigation robot’s less intuitive movements.

In our study, delivery and skateboard each had three reward features but both
objective and subjective results strongly indicated that the latter domain was more
challenging for participants. First, delivery supports more “local” planning around
mud patches and batteries whereas skateboard requires more “global” planning that
considers the distance to the skateboard and the subsequent distance to the goal to
determine whether it is worth detouring to pick up the skateboard on the way to
the goal. In this, we’d argue that the skateboard domain has an implicit dependence
between the action and skateboard reward features that must be carefully considered
in advance before selecting between two paths. Furthermore, the grid size of the
delivery domain was smaller than skateboard and the reward weights were more coarse
(the reward weights for delivery were -3, 3.5, and 1 for moving out of mud, picking up
the battery, and for each action respectively whereas the reward weights for skateboard
were 0.825, 0.4875, -1 for moving with the skateboard, moving on the path, and
for each action respectively). This allowed for more subtle trade-offs to be made in
the skateboard domain such that the difference in reward between a trajectory that
detoured to pick up the skateboard first, a trajectory that detoured to go on the
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path instead, and a trajectory that went straight toward the goal could differ by only
fractional amounts.

In summary, for complex domains with a high number of reward features, a
high degree of interaction amongst the features, and subtle trade-offs, we see a
proportionally higher benefit of teaching via demonstrations. Future studies may
also consider how to explicitly highlight such trade-offs not only in demonstrations
but explicitly in natural language using domain-level concepts, which was found to
lead to higher user understanding and confidence in understanding of agent decision
making [87].

Finally, we note that the domains underwent a number of iterations as the
research progressed as we sought to remove potential confounds that would influence
the effect that we wanted to measure, which was ultimately the effect of various
teaching conditions on human learning outcomes. While we intentionally used abstract
geometric shapes as opposed to semantically meaningful images that would likely
bias learning with a prior (e.g. a battery would be good, and mud would be bad for a
ground delivery robot), we found two potential additional confounds as we conducted
pilots and user studies. First, we removed the ability for the agent to exit the domain
if it deemed completing the task to be more costly than exiting (a single action).
While exiting is algorithmically similar to any other action from the point of view of
the agent, we found that people especially struggled to reason over this action. As
explained in more detail in Chapter 4, we hypothesize that people naturally had a bias
toward figuring out how to complete the task presented to them rather than if they
should complete the task, as the latter seemingly requires reasoning over both how
and if they should complete the task. We also changed the skateboard reward feature
and weights between Chapters 5 and 6 to perhaps be more intuitive such that action
weight was always present and skateboard and path weights were positive. Originally
when the skateboard, path, and actions weights were mutually exclusive and each
negative, we anecdotally found that people struggled even more to infer the correct
signs of the reward weights (see Table 6.1). Rane et al. [77] show that a learner’s
ability to correctly infer the demonstrator’s reward function from behaviors critically
depends on the learner’s ability to correctly model the demonstrator’s transition
function. We similarly posit that reward inference depends on the learner’s ability
to model the demonstrator’s reward features (which is an assumption that we’ve
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made throughout this thesis). To conclude, we posit that we ought to be mindful of
cognitive biases that influence human inference over agent behaviors, such as priors
over the unlikelihood of special actions like exiting. Second, future work may explore
the extent to which the transparency of a policy depends on the learner’s knowledge of
the agent’s reward features, especially for deep neural network-based representations.

7.2 Limitations & Future work

We now discuss the limitations of this thesis’ approach and findings, as well as
corresponding avenues for future work.

Dimensionality and form of reward function and domain

In this work, we focused on teaching a low-dimensional reward that specifically
took the form of a weighted linear combination of reward features. And though the
reward features can theoretically be nonlinear with respect to states and actions and
capture arbitrarily complex reward functions, the methods proposed in this thesis
were designed for domains with reward functions that cleanly decompose into a set of
disentangled, semantic features.

Furthermore, we constrained ourselves to grid worlds of limited size and diversity
(e.g. the number and locations of possible mud and path patches in the delivery and
skateboard domains were decided a priori) that could support exhaustive enumeration.

Future work: One obvious extension is to consider teaching reward functions
that are a weighted linear combination of many more than three reward features.
In this scenario, we posit that learning abstractions that group related reward
features into lower-dimensional reward features whose corresponding weights can
be communicated will be key, e.g. as humans struggle to reason about statistical
relationships beyond three variables at once [29]. Sanneman and Shah [82] found such
abstractions to be a good compromise between conveying information while limiting
the workload required of the human to understand (see [83] for additional exploration
of these results). Recent work has also begun leveraging such abstractions, or often
referred to concepts, to increase the interpretability of policies learned through RL
[16, 101]. However, these methods require the human to hand-specify the concepts.

105



7. Discussion

Automatically distilling high-dimensional reward features into low-dimensional and
semantically meaningful concepts and selecting demonstrations that convey both the
concepts as well as the weighting will be an important direction moving forward.

Furthermore, there are many other forms that the agent’s reward function can
take, such as logical conjunctions of atomic features that allow limited non-linearity
(e.g. interaction effects) [14, 55], Gaussian Processes (GP) reward functions that
allow for more expressive non-linearity [56], and deep representations that allow for
both expressive non-linearity and faster query times than GPs [97]. Future work
may explore how to convey reward functions of various forms using demonstrations.
For instance, for a GP-based reward function that maps feature values to rewards,
demonstrations could perhaps be chosen heuristically as those whose feature values
correspond to those of inducing points that approximate the GP.

Finally, continuous domains or real-world domains may not afford an exhaustive
enumeration of all possible domain instances from which to select possible demon-
strations. In such cases, candidate domain instances that may support the desired
knowledge component to be shown through a demonstration may need to be generated
on the fly. Similar in spirit to goal recognition design [41], which aims to find a
domain instance that forces an agent to reveal its objective as early as possible, this
real-time enumeration of domain instances may potentially be formulated as a search
problem.

Models of Human Learning and Abilities

In this thesis, we assumed that humans learn from demonstrations by inferring the
underlying reward function using reasoning akin to inverse reinforcement learning
(IRL). However, we found evidence in the objective results of Chapters 4 and 5, as
well as in the coding of participant quotes in Chapter 4 that people may sometimes
be learning from demonstrations using reasoning akin to imitation learning (IL).
Furthermore, we also assumed that humans will be able to reconstruct the optimal
policy given a reward function using reasoning akin to planning. However, we observed
in the follow-up user study in Chapter 6 that people failed to perfectly predict the
agent’s behavior in tests even when they were explicitly provided the agent’s reward
features and weights.
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Finally, Chapter 6 began to introduce some personalized instruction via teaching
and testing in a closed-loop manner. Though the framework was designed with
principles from the education literature in mind, it still largely adopts a one-size-
fits-all approach without any real-time adaptation on key parameters (e.g. the
concentration parameter κ of the Von Mises-Fisher distribution) nor based on the
human’s current affective state (i.e. their mood or emotions).

Future work: Though IRL and IL are both accepted styles of human learning
from demonstrations [32], there are a number of possible algorithms that support both
styles [68] and it is not always obvious which style or algorithm would best model
human learning in a given situation. It is possible that people switch between IRL
and IL-style reasoning (e.g. depending on the familiarity of the domain [47], which
can even change as a function of the number of demonstrations seen – see Section 4.5),
or perhaps there is yet another style of learning from demonstrations that humans
employ. Findings by Lage et al. [47] additionally suggest that human learning of the
agent’s policy can increase if the agent correctly models the human learning style
(e.g. IRL vs IL) when generating demonstrations. Determining when humans employ
IRL or IL, and identifying other styles of human learning from demonstrations will
be interesting future endeavors.

The closed-loop teaching framework depends on key parameters such as κ of the
Von Mises-Fisher distribution which models how much the human learns from each
demonstration (the higher the κ, the less likely any belief over the agent’s reward
function that is inconsistent with the demonstration will survive in the particle filter,
such that κ = 0 corresponds to learning nothing), and k, the number of beliefs that are
sampled from the running human model to forward simulate human expectations on
the agent’s behavior when estimating the information gain of a demonstration. These
values were hard-coded, and future work may optimize these values on a population
or individual level based on historical data.

Finally, while we have focused primarily on the cognitive domain of learning
(e.g. selecting demonstrations that will convey a desired knowledge component while
belonging to the ZPD), there is increased recognition that educational technologies
must also target the affective domain of learning as well [72]. Positive affect has been
shown to increase flexibility in thinking, integration of ideas, intrinsic motivation, etc
[36]. Kaushik and Simmons [40] have shown that the affective behavior of a robot
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teacher can influence both subjective ratings (e.g. perceived difficulty of a task) and
objective learning outcomes by a human leaner, and future work should similarly
consider monitoring and influencing the affective state of the human learner toward a
better learning experience.

Modality of Explanations

We largely restricted ourselves to increasing the transparency of agent policies through
demonstrations in this thesis. However, this is just one form that policy and reward
explanations can take.

Future work: We saw in the follow-up study in Chapter 6 that direct reward
explanations integrated nicely with demonstrations to yield high objective and sub-
jective outcomes nearly across the board. This highlights the potential synergies
that can arise from employing complementary explanation techniques; e.g. global
policy-level techniques that convey an understanding of an agent’s overall behavior
through representative examples can be combined with with local feature importance
techniques that highlight the contextual factors the influence an agent’s single decision
[64].

Finally, language is another common modality for teaching that shares strengths
and weaknesses that are complementary to that of demonstrations (e.g. see [20, 21] for
work on explaining agent decision making to humans using language). While language
has the ability to convey complex, generalizable concepts more effectively than
demonstrations, the efficacy of language is heavily dependent on shared abstraction
between the teacher and the student (e.g. what a rook is in the statement “In chess,
rooks move along rows and columns.”) [88]. Furthermore, language can suffer from
ambiguity (e.g. which can arise from stylistic differences in speech or uncertain
phrases such as ‘cold weather’ – how cold is cold?) and may struggle to convey certain
physical concepts such as spatial movement, color, etc. While demonstrations are
more grounded, they require the learner to infer the underlying rules or concepts, some
of which may be difficult to demonstrate exhaustively (e.g. it would be inefficient to
demonstrate all the possible ways that the rook can move on a chess board). Recent
work has begun exploring leveraging the complementary strengths of both language
and demonstrations for humans to teach agents [59, 100], which we posit will also
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be effective for conversely for agents to teach their policies and reward functions to
humans.
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8 Conclusion

We conclude with three insights from our thesis on what makes for informative
demonstrations that increase the transparency of agent decision making.

First, informative demonstrations differ just enough from the human’s current
expectations to be meaningfully informative. Too small of a difference and the
reconciliation in the human’s mind is trivial, and too large of a difference and the gap
is irreconcilable in one shot. One way that we subsequently operationalized the zone
of proximal development in our work was constraining each new demonstration to add
one new knowledge component/constraint (e.g. going through mud is twice as costly
as an action for a delivery robot) at a time. Interestingly, Miller [65] highlights that
human explanations more broadly are inherently contrastive with respect to a specific
counterfactual case, “presented relative to the explainer’s beliefs about the explainee’s
beliefs.” And Ehsan et al. [22] similarly notes that an “explanation is only explanatory
if it can be consumed by the recipient.” In the same vein, an effective demonstration
must be grounded in the learner’s beliefs (and their subsequent expectations) so that
it is informative.

Second, informative demonstrations illuminate trade-offs (e.g. how many actions
are you willing to take to detour around mud?) that are inherent in the agent’s
reward function. It is not always obvious how an agent’s numerical reward function
(even if given explicitly to a human) will translate into behavior, and we see that
demonstrations that highlight the bounds of the trade-off (e.g. detour with two
actions around a single patch of mud but not detouring with four actions around
two patches) are effective. We also observe that such bounds can be very subtle; for
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instance, changing the starting position of the agent by one square, all else being
equal, can radically change behavior (e.g. riding the skateboard rather than going
along the path). Thus we often opted for visual similarity amongst consecutive
demonstrations to highlight the difference, though we also observed in our first study
that visual similarity can lead to confusion if people do not recall a difference between
the consecutive demonstrations and do not have access to both. Finally, we posit
that explicitly highlighting trade-offs via demonstrations will become increasingly
important for complex agents and systems that have to negotiate competing interests
from different stakeholders in a fair manner (e.g. see work by Zhang et al. [102] that
utilizes visualizations and preference elicitation to help model designers navigate the
trade-offs in the objectives of different stakeholders).

Third, we see that methods for generating informative demonstrations can have
different impacts in different domains. In this thesis, we see that even grid world
domains comprised of state spaces of similar size and reward functions that are
each comprised of three reward features can significantly differ in their complexity.
People’s performance across our various domains always differed significantly, and we
see a proportionally higher benefit of teaching via demonstrations in more complex
domains with more subtle tradeoffs and a higher degree of interaction amongst reward
features. However, we also observe that informative demonstrations that increase
learning gains often go hand in hand with increased mental effort for humans, which
may not be necessary for less complex domains. Echoing the broader consensus in
the explainable AI literature that there is no one-size-fits-all explainability method,
the best teaching method is likely domain-dependent.

To close, fluent co-existence and interaction between humans and intelligent
agents is contingent on the transparency of agent decision making to humans. A
powerful way to communicate decision making is through through demonstrations,
and we operationalize key ideas and principles from the extensive literature on human
education to design agents that can convey their decision making to humans through
informative demonstrations. And as effective pedagogy is often more multi-modal
and multi-faceted beyond just demonstrations, e.g. using not only visuals but also
speech to engage both the cognitive and affective aspects of the learner, this thesis
is one contribution toward a more holistic explainability framework that will ensure
that agent decision making is transparent to humans.
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9 Appendix

9.1 Qualitative Responses Regarding Learning Style

Participants optionally responded to the following two questions throughout the two
user studies from Chapter 4: “Feel free to explain any of your selections above if
you wish:” (asked in conjunction with prompts for ratings of informativeness, mental
effort, and puzzlement of demonstrations in each domain, i.e. up to three times) and
“Do you have any comments or feedback on the study?” (asked after the completion of
the full study, i.e. once). Thus, each participant could provide up to four responses.

While both questions were open-ended, many participants provided responses
that provided insight into how they performed inference over the optimal behavior in
new situations. Thus, the lead author pulled a subset of the responses to be coded
that either demonstrated an attempt at understanding a specific aspect of a domain’s
reward structure (e.g. mud/yellow squares yielding negative reward), deducing the
corresponding optimal behavior (e.g. avoid mud/yellow squares if possible), or meta-
level comments on the inference performed through out the user study (e.g. seeing the
user study as a “guessing game trying to figure out reward values and such...”). Other
comments such as rote recalls of particular training demonstrations (which reveals
data used to perform inference, but not the inference mechanism itself), imprecise
remarks of confusion (perhaps over an aspect of a domain with no allusion to how
it may affect the optimal behavior), and overall impressions on user study were not
included in the coding set.

Comments in the coding set were independently coded by the lead author and a
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second coder uninvolved in the study as resembling inverse reinforcement learning
(IRL), imitation-learning (IL), or as ‘unclear’. All responses to the two questions
(including those unrelated to inference) can be found in the study data that is available
in the following repository: https://github.com/SUCCESS-MURI/psiturk-machine-
teaching. Please note that references to ‘Chip’ in the responses below are to the agent
that behaved optimally in each domain.

Table 9.1: Coding qualitative participant responses with learning styles (User study
1)

Participant ID Coder 1 Coder 2 Response

1 Unclear IRL I’m not sure at this stage why the robot
would choose to go to one ring over another.

1 Unclear IRL The study required a certain amount of infer-
ence from me rather than following explicit
instructions.

34 Unclear IRL I don’t believe this video is as informative
as the other ones because I think it should
clarify the following situation: if Chip has
to move the same amount of ‘houses’ to go
to one of the circles, which one would he go
to? Because we’ve only seen Chip going into
the green circle but is that because the green
is ‘better’ than the gray or did it choose the
green circle because it was the nearer circle?

35 IRL IRL I’m still not sure how any of these affect point
values or such

continues on next page
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35 IRL IRL This was a really interesting survey, I like
the aspect of it as some sort of a guessing
game trying to find out reward values and
such, thank you for this opportunity!

37 Unclear Unclear I’m honestly really puzzled by these games, I
hope the next page will explain the scoring.

56 IL IL Goal seems to be to get to the grey square
and avoid everything else

56 IL IRL Not sure if the goal is the nearest ring or the
green ring

59 IL IL The primary ‘mental effort’ was in memo-
rising the patterns of each level/stage and
matching the optimal movements for them.

59 IRL IRL The role of the yellow squares in affecting
my score was somewhat confusing in these
demonstrations.

81 IL Unclear I did it mostly by intuition after analyzing
the puzzles for a brief moment.

81 Unclear Unclear After completing some of the puzzles I real-
ized it was better to probably exit some of
them.

81 Unclear Unclear After some examples I feel like I’m under-
standing way better these puzzles.

98 Unclear Unclear Slowly i [sic] understand the game more and
more

continues on next page
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98 Unclear Unclear It took me a bit to understand how it works,
but as soon i [sic] got it, it was a great game

151 IL IL I think there is no reason to pick up the bar
if its [sic] not on the way

151 IRL IL Deliver the circle is priority i [sic] guess

Table 9.2: Coding qualitative participant responses with learning styles (User study
2)

Participant ID Coder 1 Coder 2 Response

7 IRL IRL I think going to the square earns & moving
with the rectangle. I *think* moving without
the rectangle loses points...

7 IRL IRL I think the both rings are rewarding
(green>grey) but moving is negative.

7 Unclear IL Deliver circle good, yellow squares bad

8 Unclear IL I couldn’t understand in which case it was
better to pick up the rectangle.

18 Unclear Unclear Confused a bit about which is the best ring
to go to in some of these examples

20 Unclear Unclear The videos were moderately informative but
did not explain rules at all, so I have to de-
pend on my own interpretation which may,
or may not, be correct. But that’s the stated
purpose I think.

continues on next page

116



9. Appendix

20 IRL IRL I did not truly understood why green circle
is preferred (worth more points?) but gray
one is acceptable as well sometimes (getting
to green would be too costly and getting to
gray would make less profit but still better
than quitting?)

20 IL IL I did not understand the rule regarding yellow
tiles. It seems they should be avoided, but
not always. Interesting...

21 IRL IRL not sure whether i [sic] get taxed going into
the yellow squares

29 IRL IRL I wonder for one of the instances where the
orange rectangle was very few moves away
(i.e., 3 or fewer) and would be with Chip for
all the remaining moves until reaching the
gray square how the game points would play
out. Actions taken with the orange rectangle
and actions without taking the orange rect-
angle both affect the score, but I am not sure
how (which is positive or negative).

29 IRL IRL Sometimes Chip grabbed the circle in more
moves than necessary to retrieve it and bring
it back to purple square. For another, when
choosing to grab the circle, Chip moved onto
white squares instead of yellow squares. Mov-
ing into a yellow square would be an action
that affects the score, but in what way? This
demonstration would imply negatively.

continues on next page
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47 IRL IRL I was unsure why chip decided to exit or de-
cided to choose x or y path. It was pretty con-
fusing. In one instance though with the board
covered in yellow, I assumed chip would end
up with a pretty negative score so chip exited.
Overall though, it is confusing.

64 IRL IRL Well the only thing really missing is the
amount of points each action does

103 Unclear Unclear I think it’s not as informative as the first one,
there are a lot more of movements, sometimes
it picked the red rectangule [sic] sometimes
it didn’t, so I’m still trying to think when to
pick and when don’t pick it.

103 IL IL I’m kind of puzzled, do I have to take one
ring to another if possible?

105 IRL IRL I’m not sure what the best strategy is, be-
cause I don’t don’t know the value of the
circles

105 IRL IRL I think moving without the orange square
take more points but i’m [sic] not sure

129 IRL IRL You need to make a moderate amount of
mental effort to understand all the rules and
outweight [sic] everything and see what is
worth it or not in the game.

129 IRL IRL I think this left me very puzzled because it
wasn’t easy to differentiate the value of the
rings.

continues on next page
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129 IRL IRL This required a significant effort to under-
stand the value of the square.

136 Unclear IL JUst [sic] will be hard to understand when
to quit or when to pick or not the orange line
but i will do my best

142 IRL IRL If I would be able to see the demonstrations
back and forth I would eventually get there,
not a specific scoreline but within limits. For
instance, the last demonstration tells me that
if moving is -1, then scoring must be higher
than 8 since chip went for it

142 IRL IRL Ok, so this time around I got way better
because I didn’t get it the first time. Also,
this puzzle is easier since there are basically
only two variables. Since this is a comparison
between green and gray, I did a mathematical
system on paint and got the information I
needed. I’m still unsure about the exact
values but my calculations tell me that if
moving is -1, then gray is around +6 and
green is around +10. This is all based on the
system I’ve come up with. For example, if
Chip would move to green in 8 moves, that
tells me that moveValue * 8 + greenValue is
positive, and since I’m assuming moving is
-1, then this means greenValue - 8 > 0 which
means greenValue > 8.

142 IRL IRL a = yellow value, b = white value, c = objec-
tive value.

continues on next page
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1) a + 8b + c > 0
2) 2a + 4b + c > 0
3) 2a + 6b + c > 0
4) 6a + 2b + c < 0
5) 5a + 5b + c > 0

if b = - 1 then
1) a + c - 8 > 0
2) 2a + c - 4 > 0
3) 2a + c - 6 > 0
4) 6a + c - 2 < 0
5) 5a + c - 5 > 0

with this equations overlapped this tells me
that a <= -3, c >= 20
so moving to yellow is -3, getting objective
is 20, assuming white is -1

145 IRL IRL I was trying to attribute values to the rings
but weren’t able, just saw that green > grey

147 Unclear Unclear I’m not sure about which ring I should prior-
itize.

147 IRL IRL So, the yellow squares should be avoided if
possible and they possibly remove 2 points
when crossed but I’m not sure

154 IRL Unclear I think the green ring is better than the gray
ring?

continues on next page
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156 IRL IRL I chosen Moderately [sic] informative in first
question because I am not sure if there were
enough differnent [sic] possibilities shown in
demonstrations to assess how many points
we get for specififc [sic] action.

157 IRL IRL I think that score system should be explained
right away with new “mechanic”. Yellow
squares made me wonder if they’re -2 but
I could only guess
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