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Abstract
Demonstrations are a powerful way of increasing the trans-
parency of AI policies to humans. Though we can approxi-
mately model human learning from demonstrations as inverse
reinforcement learning, we note that human learning can dif-
fer from algorithmic learning in key ways, e.g. humans are
computationally limited and may sometimes struggle to un-
derstand all of the nuances of a demonstration. Unlike re-
lated work that provide demonstrations to humans that simply
maximize information gain, I leverage concepts from the hu-
man education literature, such as the zone of proximal devel-
opment and scaffolding, to show demonstrations that balance
informativeness and difficulty of understanding to maximize
human learning.

Introduction
As complex policies learned through reinforcement learn-
ing increasingly pervade society, it is paramount that their
underlying reward functions and subsequent behaviors are
transparent, i.e. predictable and understandable to humans.
A natural way that humans communicate and comprehend
each others’ policies is through demonstrations. Thus, one
way to increase the transparency of AI policies is also
through demonstrations. Furthermore, human behavior is
commonly modeled as being driven by reward functions,
which can be inferred by other humans through reasoning
akin to inverse reinforcement learning (IRL) (Jara-Ettinger
2019). My research thus models humans as IRL learn-
ers, and explores how AI can teach its reward function
to humans using informative demonstrations.

Though I borrow from the IRL literature to model human
learning from demonstrations, I note that human learning
differs from algorithmic learning in a key way: humans are
limited in their computational capacity and may struggle to
understand all the nuanced implications of a demonstration
given their current beliefs. In contrast to related work that
provide demonstrations that simply maximize information
gain (Lage et al. 2019; Huang et al. 2019; Qian and Un-
helkar 2022), I crucially observe that informativeness and
difficulty of understanding are often two sides of the same
coin to humans and thus show demonstrations that balance
the two to maximize human learning.
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Teaching Reward Functions in the ZPD
Completed work: Instructional material that is not too
easy but also not too difficult for a learner is said to belong in
the zone of proximal development (ZPD), also often referred
to as the “Goldilocks” zone. Teaching and testing in the ZPD
is common in human education to maximize learning.

Key to teaching and testing reward functions in the ZPD
is modeling human beliefs and counterfactual reasoning.
When considering which demonstration or test to provide
next, the AI must ask “How does the human expect me to
behave given their current beliefs?” Our insight is to pro-
vide a behavior that differs from the human’s counterfactual
expectation just enough to be meaningfully informative. Too
small of a difference and the reconciliation in the human’s
mind is trivial, and too large of a difference and the gap is ir-
reconcilable in one shot. My core research contribution to
date is selecting teaching demonstrations and tests that
lie in the ZPD to maximize human learning (and thus
the transparency) of AI reward functions and policies.

As a case study of these ideas, imagine that a human sees
a delivery robot for the first time as it takes a two-action de-
tour around one mud patch (Fig. 1a). Because the robot does
not take arbitrary actions and does not go through the mud,
human may infer using IRL-like reasoning that this robot
deems actions costly and that entering mud must be at least
twice as costly as an action. These two relations can be rep-
resented as the two half-space constraints in Fig. 1b. Note
that this information is gained by comparing the robot’s be-
havior against a counterfactual, i.e. an alternative behavior.

In choosing what to demonstrate next, the robot exam-
ines counterfactuals likely to be considered by the human
by rolling out trajectories consistent with reward functions
sampled from its model of the human’s beliefs (Fig. 1b) in
various environments (Lee, Admoni, and Simmons 2022a).
E.g. when given the environment in Fig. 1c, the human may
expect the robot to also detour around two mud patches.
And because it would instead go through the mud, the robot
considers this an informative next demonstration that may
lowerbound the mud cost in the human’s mind (Fig. 1d).

And while it may be tempting to always provide demon-
strations that yield the highest information gain, my first
user study suggests that information gain often correlates
with the effort required for the learner to process it (Lee,
Admoni, and Simmons 2021). In education, teachers lever-
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Figure 1: A sequence of demonstrations and the corresponding updated model of human beliefs over robot’s reward function.

age the technique of scaffolding to teach in the ZPD, i.e. by
providing structure that helps a learner accomplish a task be-
yond their current abilities. I thus propose an algorithm that
scaffolds a curriculum of demonstrations that incrementally
increases in information to ease humans into learning (Lee,
Admoni, and Simmons 2021).

My second user study taught a robot’s reward function
via pre-selected demonstrations, then tested the participants’
ability to predict robot behavior in unseen scenarios. Results
showed that my algorithm for scaffolding demonstrations
increased performance on tests examining understanding
of later-demonstrated (reward) concepts, but also decreased
participants’ performance on tests on early-demonstrated
concepts, suggesting that I perhaps challenged participants
too early without feedback regarding their understanding
(Lee, Admoni, and Simmons 2022b). I address the short-
comings of such an open-loop teaching paradigm next.

Current work: An effective teacher engages the learner
in a closed-loop fashion, constantly updating their model of
the learner’s beliefs based on the instruction provided and
test responses, then updating the next lesson accordingly.

Each half-space constraint generated by IRL can be
treated as a “knowledge concept” (KC) (Koedinger, Cor-
bett, and Perfetti 2012) that encapsulates a characteristic of
the reward function (e.g. mud is at least twice as costly as
an action) that the human may have internalized. However,
a model of human beliefs purely comprised of half-spaces
cannot handle conflicts that arise when the human incor-
rectly applies a KC during testing that was assumed to be
learned during teaching (as you cannot reconcile two half-
space constraints that point in directly opposite directions).

I thus move to a probabilistic human model in the form of
a particle filter. Each particle represents a potential human
belief of the robot’s reward function, and particle weights
are updated in a Bayesian fashion based on constraints con-
veyed through teaching demonstrations and test responses.
By leveraging a particle filter, my algorithm not only selects
demonstrations and tests in the ZPD that provide the right
amount of information, but also gracefully affords iterative
updates to the human model during teaching and testing.

I propose a closed-loop teaching algorithm (Lee, Admoni,
and Simmons 2023) that incrementally teaches a set of re-
lated KCs (e.g. upper- and lowerbounds on the mud cost) in
a series of units. For each unit, it provides scaffolded demon-
strations, then presents the human with diagnostic tests that
require understanding of the conveyed KCs. For each missed
KC, it provides feedback and a remedial demonstration that
teaches the KC again as simply as possible. Finally, it ends

each unit by continually testing the learner on this KC us-
ing remedial tests and corrective feedback until they get it
right. These remedial tests leverage the testing effect, where
leveraging tests not as assessments but teaching tools leads
to better learning over passively studying (e.g. seeing more
demonstrations). A user study finds our proposed closed-
loop algorithm reduces the regret in human test responses
by 41% over a baseline and is rated as more usable by users
in one of the two considered domains (under review).

Future work: My goal is for AI and humans to be able
to fluently identify and reconcile gaps in their understand-
ing of each other’s reward functions in high dimensional and
complex domains. Toward realizing this goal, I am next in-
terested in exploring the following three questions.
• As humans struggle to reason beyond the interaction of

three variables, how can we decompose high dimensional
reward functions into lower dimensional abstractions?

• The diversity of environments drives the diversity of
demonstrations. Moving beyond grid worlds, how may
we generate sufficiently expressive environments in
which an AI can demonstrate the desired information?

• How can demonstrations work in conjunction with local
explainable AI techniques (e.g. conveying feature impor-
tances for an action) to increase policy transparency?
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