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1 Particle Filter
We model a human’s beliefs over an agent’s reward function
as a set of particles, defined by their positions and associated
weights {xt, w̌t}. Each particle represents a possible reward
function the human could believe the agent to have, and the
associated particle weight captures the strength of that belief.
Without loss of generality, assume that at each time step t,
a demonstration is provided to the human or a test response
is received from the human. Each demonstration or test re-
sponse will produce one or more half-space constraints via
Eq. 1 (see the main paper) that can be used to update the
particle filter, where each constraint captures a characteristic
of the reward function. For example, a demonstration or test
response that takes two actions to detour around a mud patch
rather than go through the mud patch will convey a constraint
that going through mud must be at least twice as costly as an
action.

1.1 Custom Distribution Parameter
We propose a custom probability distribution p(xt|yt) for up-
dating particle weights given a half-space constraint yt. It is
comprised of a uniform distribution that aligns with the con-
sistent half-space of the constraint and a von Mises-Fisher
distribution (a generalization of the Gaussian distribution on a
sphere [Dhillon and Sra, 2003]) whose mean direction aligns
with the inconsistent half-space. In addition to its mean di-
rection, a von Mises-Fisher distribution is described by its
concentration parameter κ, which, as the name implies, cap-
tures how concentrated the distribution is around its mean.
In our experiments, we set κ to be 2, which we empirically
observed as providing the right signal-to-noise ratio during
the particle weight updates (κ = 0 corresponds to the uni-
form distribution and the distribution becomes more peaked
around the mean, and less noisy, as κ increases).

1.2 Sampling Beliefs for Counterfactual Reasoning
We calculate the half-space constraints a demonstration could
provide using counterfactual reasoning. Each constraint is
calculated by comparing the agent’s optimal behavior against
alternative behaviors the human could counterfactually ex-
pect of the agent given their beliefs. We obtain these alter-
native behaviors by sampling a subset of the particles (which
each correspond to a reward function) and rolling out the cor-
responding optimal behavior. As noted in the main paper,

Figure 1: Human counterfactuals are generated by sampling beliefs
from the particle filter model. As nearby particles are likely to gen-
erate similar counterfactuals, we rely on the 2-approximation algo-
rithm for the k-center problem to sample k beliefs (marked by red
crosses) that are spread out.

we rely on the 2-approximation algorithm [Hochbaum and
Shmoys, 1985] to greedily select k distributed samples such
that the maximum distance from any particle in the candidate
set to one of the k samples is minimized (see Fig. 1).

For our experiments, we set k to be 25. To support real-
time counterfactual reasoning, we also sampled 2500 beliefs
from the surface of the 2-sphere (the space of possible hu-
man beliefs regarding the agent’s reward function in our do-
mains) for which we pre-computed the optimal policies. Each
particle in the particle filter was then mapped to the closest
pre-computed belief during experiments toward efficient se-
lection of additional demonstrations and tests.

1.3 Resampling and Resetting
We address common challenges to using particle filters in
practice. Sample degeneracy occurs when successive updates
to the weights of the particles cause only a few particles to
have high weight and the particle filter fails to model regions
of interest in the posterior with sufficient detail [Li et al.,
2014]. Furthermore, the number of particles (i.e. sample size)
should adapt to the complexity of the distribution being mod-



eled. To address both concerns, we rely on KLD-resampling
[Li et al., 2013] to obtain the sample size that bounds the
Kullback-Leibler (KL) divergence between the sample-based
maximum likelihood estimate and the true posterior distri-
bution, and simultaneously rely on systematic resampling to
concentrate the sampling near regions of high probability. Fi-
nally, measures to combat sample degeneracy can actually
cause sample impoverishment, where the particle filter is too
concentrated and not amenable to future shifts in the poste-
rior. Thus we resample only when the effective sample size
(a measure of sample degeneracy) drops below a predefined
threshold and also add Gaussian noise when resampling the
particles [Li et al., 2014]. This limited resampling balances
the risk of running into sample degeneracy or sample impov-
erishment, which are at opposite extremes.

Furthermore, the particle filter may converge, then sud-
denly obtain new information that is heavily inconsistent with
the current distribution. In this case, the filter will struggle to
update, as none or very few of the particle weights would
be increased to shift the distribution in a meaningful way.
We thus implement particle filter resetting, taking inspiration
from sensor resetting localization [Lenser and Veloso, 2000]
that combats the kidnapped robot problem, where the robot
has been moved without being told and must reinitialize its
localization. A reset triggers when the weights of the parti-
cles, after accounting for p(xt|yt) and before weight normal-
ization, drop below a threshold. We uniformly distribute a set
number of particles into the consistent half-space and again
rely on KLD-resampling [Li et al., 2013] to obtain the num-
ber of particles that will bound the KL divergence between
the posterior distribution following the reset and its sample-
based maximum likelihood estimate. We then sample that
number of particles directly from the custom distribution cor-
responding to p(xt|yt) and add it to the particle filter (see Fig.
2).

2 Closed-loop Teaching Framework
We characterize the proposed closed-loop teaching frame-
work in pseudocode below (also described in the main paper
in Section 4.2, Fig. 2, and Fig. 5).

Algorithm 1 Closed-loop Teaching Framework
1: Group related knowledge components (KC) into batches using

counterfactual scaffolding [Lee et al., 2022]
2: for each batch of KCs (i.e. lesson) do
3: Provide initial demonstrations and diagnostic tests
4: Evaluate diagnostic test responses
5: for each diagnostic test incorrect response do
6: Provide corrective feedback, remedial demo, and a re-

medial test
7: Evaluate remedial test response
8: while remedial test response is incorrect do
9: Provide corrective feedback and provide new reme-

dial test
10: Evaluate remedial test response
11: end while
12: end for
13: end for

3 User Study
We provide additional details on the user study that tests
our four hypotheses on how the between-subjects variable of
feedback loop (conditions: full closed-loop, partial closed-
loop, open loop) affects correctness of test responses (H1)
and ratings on focused attention and perceived usability (H2),
improvement (H3), and understanding (H4). The within-
subjects variable was domain (conditions: delivery, skate-
board), and the order of the domains was counterbalanced.

H1: We considered analyzing test responses in two ways:
binary scores measuring the optimality of human test re-
sponses, and regret measuring the degree of suboptimality of
human test responses (i.e. the difference between rewards of
human and optimal test responses). The former analysis was
coarse and did not yield any significant results, so we opted
for the latter which provides a finer resolution. And though
one participant had only 11/12 test responses recorded, this
does not significantly impact the results as responses were
averaged for each participant and 2447 total responses were
recorded.

H2: We ran a Cronbach’s alpha to verify the reliability of
the corresponding Likert scales for measuring focused atten-
tion and perceived usability. For focused attention, we ob-
served that the value rose from α = 0.58 to α = 0.65 with-
out the second item (which asked for a response to the ques-
tion “The time I spent learning the game strategy passed by
quickly.” on a 5-point scale) and we remove this item from
the analysis accordingly. For perceived usability, we keep all
items for the analysis below as removing any of them did not
increase the α = 0.86 that was obtained using all items.

Questions from the User Engagement Scale short form
[O’Brien et al., 2018] were adapted to measure focused at-
tention:

• “I was fully engaged with learning the game strategy.”
• “The time I spent learning the game strategy passed by

quickly.”
• “I was absorbed in this experience.”

and measure perceived usability:
• “I felt frustrated while learning the game strategy.”
• “I found learning the game strategy confusing.”
• “Learning the game strategy was taxing.”

each answered with a 5-point Likert scale.

4 Limitations
In principle, the proposed methods in the paper can be used
to teach RL policies whose reward functions take the form of
a weighted linear combination of reward features.

Practically, demostrations and tests are selected from a set
of possible grid world settings, which can be computationally
expensive to enumerate depending on the size of the set. Fur-
thermore, constraints on reward functions underlying demon-
strations and test responses are generated using reward fea-
tures counts µ, which extend naturally to continuous state
and action spaces (see Eq. 1 of main paper). However, our
method will still require discretization in continuous state and
action spaces given an infinite set of possible demonstrations.



Figure 2: When a test response is heavily inconsistent with the current model of human beliefs, we perform a reset. The constraint consistent
with the test response is shown in all panels, with the consistent side shown with the uniform distribution as a yellow dome in the center
panel. The agent reward function is shown as a red dot.
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