Closed-loop Reasoning about Counterfactuals to Improve Policy Transparency

Michael S. Lee Henny Admoni Reid Simmons
The Robotics Institute, Carnegie Mellon University

Overview
How can we increase the transparency of AI policies by providing demonstrations, tests, and feedback to humans?

We design a closed-loop teaching scheme inspired by the human education literature, where the AI iteratively provides informative and understandable demonstrations given a human’s counterfactual expectations of the AI’s policy.

Background
Calculate informativeness of a demonstration, assuming humans infer others’ policies and reward functions through inverse reinforcement learning (IRL).

Increase understandability by teaching in the zone of proximal development, showing demonstrations that differ just enough from the human’s counterfactual expectations of AI behavior.

Approach
Proposed closed-loop framework for teaching AI policies: (based on education principles, e.g. testing effect, expertise reversal):

An example teaching progression given a model of a human’s beliefs and counterfactual expectations:

Evaluation & Future Work
User study will test whether the closed-loop teaching improves learning outcomes (via a held out set of tests), learning efficiency (via subjective reports of improved understanding), and user engagement (via User Engagement Scale [1]) over baseline of showing only demonstrations.

Future work: scale approach to policies that operate on high dimensional states and reward functions across different contexts; explore synergies between increasing policy transparency via demonstrations and language.

This work was supported by the ONR award N00014-18-1-2503.