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Abstract— 3D radiation source localization is a common task
across applications such as decommissioning, disaster response,
and security, but traditional count-based sensors struggle to effi-
ciently disambiguate between symmetries in sensor, source, and
environment configurations. Recent works have demonstrated
successful passive source localization using a bearing sensor
called the Compton gamma camera that can image radiation.
This paper first presents an approach to mapping the spatial
distribution of radiation with a gamma camera to estimate
source locations. An active source localization framework is
then developed that greedily selects new waypoints that max-
imize the Fisher Information provided by the camera’s range
and bearing observations for source localization. Finally the
common assumption of a static step size in between waypoints
is relaxed to allow step sizes to adapt online to the observed
information. The proposed radiation mapping approach is
evaluated in 5×4 m2 and 14×6 m2 laboratory environments,
where multiple point sources were localized to within an average
of 0.26 m or 0.6% of the environment dimensions. The active
source localization approach is evaluated in simulation and an
adaptive step size yields a 27% decrease in the localization time
and a 16% decrease in the distance traveled to localize a source
in a 15×15×15 m3 environment.

I. INTRODUCTION

Radiation source localization is a common task across ap-
plications such as decommissioning of nuclear facilities, dis-
aster response, and security. Count-based radiation detection
sensors traditionally used for such tasks (e.g. Geiger-Muller
counters and scintillators) only convey point measurements
of field strength [1] and may require extensive observations
over space and time to estimate source locations. Even with
numerous readings, these sensors may fail to locate sources
in cluttered 3D environments due to symmetries in sensor,
source, and environment configurations.

Methods for radiation field mapping and source local-
ization using these count-based sensors have been studied
extensively due to their low cost and ubiquity, but most works
rely on limiting assumptions such as a prior knowledge of
the number of sources [2], a clutter-free environment with
negligible attenuation [3–5], or a 2D environment [6].

The recent commercialization of a sensor called the Comp-
ton gamma camera that can image the direction of origin of
incident gamma photons presents new opportunities for effi-
cient radiation mapping and source localization. Passive 3D
radiation mapping of a cluttered environment was recently
demonstrated through the iterative triangulation of bearing
measurements made by a gamma camera along hand-carried
and teleoperated trajectories [7]. This work advances the state
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of the art by applying the gamma camera in an active source
localization framework.

Successful target localization with bearing-only sensors
fundamentally relies on maneuverability to ensure observ-
ability [8]. A common objective used in trajectory generation
is the maximization of a Fisher Information Matrix (FIM)
measure [8–12]. The Fisher Information is also chosen as
the objective in this paper for two reasons. First, the Cramer-
Rao lower bound proves that the inverse of the Fisher
Information Matrix is the minimum covariance achieveable
by an unbiased estimator [13]. Second, it has also been
shown to yield inward spiraling trajectories [10, 12, 14]
that both reduce the distance to the source and allow for
bearing observations with sufficient angular separation for
triangulation. The paper provides three contributions:

• An approach to mapping the spatial distribution of
radiation using observations from a gamma camera is
introduced. The approach is validated with experiments
conducted in 5×4 m2 and 14×6 m2 laboratory environ-
ments, localizing multiple sources to within an average
of 0.26 m or 0.6% of the environment dimensions.

• An active source localization framework based on the
Fisher Information Matrix is developed to generate opti-
mal trajectories. While previous works have derived the
FIM for range-only [14] and bearing-only [10] sensors
for motion in a single plane, this paper develops a joint
framework for the range and bearing-based nature of
gamma camera observations to generate 3D paths.

• The standard assumption of a fixed distance between
waypoints [10, 14] (i.e. step size) is relaxed, and the
step size is allowed to adapt online to the observed
information. The benefits of an adaptive step size are
demonstrated in simulation, which leads to a 27%
decrease in localization time and a 16% decrease in
the distance traveled for the scenarios considered.

II. METHODOLOGY

This paper addresses the perception and control necessary
for active 3D radiation source localization. First, a radiation
mapping framework that leverages the bearing observations
of a gamma camera is developed. The map is represented
as a voxel grid of radiation occupancy probabilities that is
thresholded for source location estimates. A control law that
maximizes the range and bearing Fisher Information of the
estimated source location throughout the camera’s trajectory
is formulated. Finally, the trajectory is observed to be highly
sensitive to step size and a policy for adapting the step size
with the observed information is proposed.
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A. Radiation Mapping using a Gamma Camera

1) Compton Gamma Camera: A gamma camera not only
provide the count and energy of incident gamma photons
but also their direction of origin through Compton imaging.
Compton imaging in turn relies on the physics of Compton
scattering, in which a photon collides with an electron in its
path, deposits a portion of its energy, and deflects in a new
direction. Given the incident photon energy, deposited ener-
gies, and interaction locations, Compton scattering physics
constrains the incident direction to a cone (as shown in Fig.
1) [15]. As the camera dwells and images at a waypoint,
many such Compton cones will accumulate and converge to
the direction of the radiation source.

This work uses a Polaris-H sensor, which detects the
locations of interactions and the deposited energies necessary
for Compton imaging using a 2×2×1.5 cm3 CdZnTe crystal.
In what is known as an event, an incident gamma photon may
interact m times in the crystal and deposit E1, E2, ..., Em en-
ergies. N events observed by the sensor between time indices
t− 1 and t will be grouped in sequence in list-mode format
as z(t) = {z(t)1 , z

(t)
2 , ..., z

(t)
N } where z

(t)
n ∈ Rm× 4, m ∈ N.

Each event is represented as an m × 4 matrix, where each
row records the discretized x, y, z coordinates and deposited
energy E of an interaction.

2) Radiation Imaging: The operation of the gamma cam-
era can be described at a high level as a response function
that maps radiation source distribution in its environment to
corresponding sensor observations. This is captured by the
equation below with the source distribution mr ∈ RJ × 1,
the sensor model O ∈ RI × J , and the likelihood of possible
sensor observations z̄ ∈ RI × 1

z̄ = O ·mr (1)

where the environment is discretized into J voxels, and mrj

is the number of photons emitted from voxel j. I is the
space of all possible events (i.e. combinations of possible
interaction locations and energies) and z̄i ∈ z̄ is the expected
number of times the ith event is observed. To solve for the
source distribution, two items are needed: the sensor model
and a method of inferring mr given z̄.

The sensor model oij is the probability that a photon from
voxel j is detected as the event zi (i.e. p(z̄i ≥ 1|mrj =
1) = oij). The analytical sensor model used in this paper
is derived in [15], which accounts for the inverse square

Fig. 1: Physics constrains the incident direction of a photon that Compton
scatters at two or more interaction locations (P1,P2) and energies (E1,E2)
to lie along a cone along with axis Ω and opening angle θ. [15]

Fig. 2: Top: 2D MLEM radiation image of a single source in front of
the detector at 45 degrees azimuth and 23 degrees elevation. Bottom:
Corresponding 3D MLEM radiation image, where the detector is shown
as a blue cube, source is shown as a red sphere. Voxels are colored from
yellow to blue, corresponding to the probability being along the source
direction (only voxels with p > 0.9 are shown).

law radiation, the probabilities of Compton scattering and
photoelectric absorption, and the shape of the Compton cone.
The extensive model is omitted here for brevity.

Once the analytical sensor model has been calculated for
each of the observed events zn in the list-mode data z,
an iterative imaging algorithm called Maximum Likelihood
Expectation Maximization (MLEM) can be applied to infer
the source distribution that likely gave rise to the sensor
observations [15]. MLEM can be adapted to work in a 2D
imaging space to create an image or a 3D imaging space
to create a voxel grid-based map. The algorithm is again
omitted here for brevity. Examples of 2D and 3D MLEM
images from the same dwell point are shown in Fig. 2.

In contrast to count-based sensors that infer range based
on the number of observed counts, source source strength,
and intermediate attenuation, gamma cameras can determine
the direction of the source without any assumptions on
the aforementioned quantities. Radiation images taken at
distinct locations can then be used to triangulate the source
location. This not only enables operation in a broader class
of environments, but also allows the peaks of the radiation
maps to be approximated as source locations with fewer
assumptions on the source and environment configurations.

3) Radiation Mapping: The radiation distribution is mod-
eled as a voxel grid with J voxels that each maintain a prob-
ability of containing a source as mp = {mp1 ,mp2 , ...,mpJ}.
To build a 3D map from 2D images, each voxel is updated
with the occupancy probability of the corresponding 2D
image pixel that lies along the same spherical direction.
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Algorithm 1 Updating Radiation Map

1: procedure UPDATEMAP(mp
(t−1),p(t), z1:t,T1:t)

2: counts = length(zt)
3: total counts =

∑t−1
k=1 length(z

(k))
4: αc = counts

total counts

5: αt =
Tt−Tt−1

Tt−T1
6: for all j do
7: if pjt ≥ occupancy threshold then
8: m

(t)
pj = m

(t−1)
pj + αc · (p(t)j −m

(t−1)
pj )

9: else
10: m

(t)
pj = m

(t−1)
pj + αt · (p(t)j −m

(t−1)
pj )

11: end if
12: end for
13: end procedure

As MLEM associates a portion of the total number of
detected events in z(t) at time t to each of the J voxels as
mrj (see Eq. 1), the following is proposed as the probability
of occupancy

p(m(t)
rj |z

(t)) =
m

(t)
rj

maxj(m
(t)
rj )

= p
(t)
j (2)

If no counts are observed, then p(m(t)
rj |z(t)) = 0.

To incorporate p(t)j into the map, a threshold is used to
first classify the probabilities into “positive” and “negative”
measurements of source occupancy. “Positive” measurements
are scaled by the number of counts received in z(t) and
“negative” measurements are scaled by the duration of z(t)

as counts and time are the units of information for presence
and absence of sources, respectively.

A voxel grid-based radiation map mp is updated with the
new probabilities of occupancy p(t) obtained from the sensor
observations z(t) following Alg. 1. T1:T denotes the dwell
times associated with the sensor observations z1:t. Under
the assumptions of no state uncertainty and no measurement
uncertainty, the map update simplifies to a moving average
update that is computationally light and amenable to real-
time performance.

B. Active Source Localization
Observations of a gamma camera are range-dependent as

the number of incident photons falls off with the square of
the distance, and bearing-dependent as angular separation of
measurements must be maximized for triangulation. Thus,
the goal of this section is to derive an optimal control law
for a gamma camera that greedily maximizes the range
and bearing information observed (in the Fisher Information
sense) for efficient source localization.

1) Range and Bearing Sensor Models: Let s =
[s1, s2, s3]> ∈ R3 and p = [p1, p2, p3]> ∈ R3 be the source
and sensor locations, respectively. The relative position of
the sensor is r = p− s as illustrated in Fig. 3. Observations
are defined as random variables range zR and bearing zB.

The range sensor model considers the probability of ob-
serving a given number of photons. Let Q0 be the known
rate of photons incident on the detector 1 m away from the
source and ∆t be the dwell time of the sensor a distance
‖r‖ away from the source. Accounting for the inverse square

law of attenuation of radiation, the sensor can be expected
to observe the following number photons

µR(r) =
Q0∆t

‖r‖2
(3)

where ‖·‖ represents the 2-norm.
Though the decay of a source is commonly modeled as

Poisson distributed with mean µ. a Gaussian distribution with
mean and variance µ is a good approximation whenever µ >
20 [1]. As common lab sources between 1 µCi to 100 µCi
emit tens of thousands to millions of photons a second, the
following Gaussian sensor model is adopted for range

p(zR(r);µR) ∼ N (µR, µR) (4)

The bearing to the source provided by a radiation image
can be expressed in the source frame with the azimuth and
elevation angles Ψ and Φ (see Fig. 3).

µB =

[
Ψ
Φ

]
=

 tan−1( r2r1 )

tan−1
(

r3√
r21+r

2
2

) (5)

Dwell times can be varied to ensure that a sufficient number
of photons are observed to image the bearing to a source
with a desired variance σ2

B (higher observed counts correlate
to lower image variance). Assuming an omnidirectional field
of view with minimal directional bias, a Gaussian sensor
model is once again assumed. Thus, the same analytical
sensor model that was used in [10] is used here.

p(zB;µB, σ
2
B) ∼ N (µB, σ

2
B) (6)

2) Motion Model: A robot that travels a distance dt along
a constant azimuth ψt and elevation φt between waypoints
pt and pt+1 can be modeled with the following kinematics

pt+1 = pt +

dt
cos(φt) cos(ψt)

cos(φt) sin(ψt)
sin(φt)

 (7)

where ψt and φt are defined in a stationary inertial frame.
3) Fisher Information Matrix (FIM) Derivation: Candi-

date waypoints are evaluated based on their expected FIM.
The FIM of a sensor model p(z(p)|s) at a waypoint p about
the source location s is defined as follows

FIM(s,p) = E{[∇s ln p(z(p)|s)][∇s ln p(z(p)|s)]>} (8)

where ∇ is the gradient operator.

Fig. 3: Bearing (azimuth Ψ, elevation Φ) and displacement (r1, r2, r3) of
sensor with respect to source.
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The FIM for an N-dimensional Gaussian with constant
variance, X ∼ N

(
µ̄(θ),Σ

)
, that is parameterized by K-

dimensional parameter vector θ = [θ1, ..., θK ]>, has the
following analytical form for the element in the ith row and
jth column (where 1 ≤ i, j ≤ K)

FIM(i,j) =
∂µ̄

∂θi
Σ−1

∂µ̄

∂θj
(9)

Adapting Eq. 9 for the range sensor model and the source
parameter vector s evaluates to

FIMR(r) = 4Q0∆t
rr>

(r>r)3
(10)

Similarly, adapting Eq. 9 for the bearing sensor model
evaluates to

FIMB(r) =
1

σ2
B

(
r̃r̃>

r̃>r̃
+

r̆r̆> � r̂>r̂

r>r

)
(11)

where r̃ = [r2,−r1, 0]>, r̆ = [r1r3, r2r3,−
√
r21 + r22]>,

r̂ = [
√
r21 + r22,

√
r21 + r22, 1], and � denotes the Hadamard

division.
4) Control: Scalar measures of FIMR and FIMB that

encourage measurements that approach the source and obtain
sufficient angular separation for triangulation are sought,
which leads to the following objective function

J(ψ, φ, d) = ln tr(FIMR)− ln tr(FIM−1B ) (12)

The trace taken of FIMR (T-optimality) is sensitive only
to the gross distance to the source and favors the shortest
path to the source. However, such a motion collapses a
3D source localization problem into a 1D line search and
leaves some source parameters unobservable. The trace of
the inverse FIM (A-optimality) complements by minimiz-
ing the average variance of the source parameter estimates
and encouraging spiraling motions that render all source
parameters observable [10]. Finally, the logs help scale the
two measures, whose operating range can vary in orders
of magnitude across a single mission due to the inverse
square law decay and optimization of near-singular matrices
of potential waypoints.

The controller greedily maximizes the proposed objective
over a single step of a given step size dt to determine the
next dwell location. This takes the form of an optimization
over the heading angles ψt, φt

[ψ∗, φ∗] = arg max
ψ,φ

J(ψ, φ, d) (13)

5) Fixed Step Size: The step size between waypoints is a
key parameter that implicitly determines the relative scaling
between FIMR and FIMB and consequently the shape of
the trajectory. Eq. 10 and 11 reveal that FIMR and FIMB
roughly scale linearly with the cross distance (xx>) and with
the third and second order of the squared distance (x>x)
respectively. As noted in [14], the squared terms draw the
sensor directly to the source while the cross terms induce
a circling behavior. This can be observed in Fig. 4 where
incremental increases in step size yield allow the squared
terms to dominate and assert a more direct approach toward
the source. Although the relative weighting between FIMR

Fig. 4: FIM-optimal trajectories with varying step sizes between 0.3 m to 4
m for a 500 µCi source. Waypoints are marked with circles. As step size is
increased, the trajectory takes a progressively direct approach to the source.

and FIMB can be modified by a tradeoff parameter to shape
the trajectories, none was used in this paper.

6) Adaptive Step Size: Heuristics such as the step size
and planning horizon are commonly set to an empirical
value that yields good performance [14, 16–18]. Some works,
however, adapt these heuristics online, as in [19, 20], where
the planning horizon is increased until sufficient information
is gained for robustness to local minima.

The gradient-based source seeking algorithm presented in
[21] modifies the usual form of gradient gain coefficients
used in literature [22, 23] to scale their search step size
inversely with the magnitude of the gradient. Drawing a
parallel between the gradient magnitude and information
gain, this paper similarly scales the search step size with
the observed information as follows

dRt =
(1 + ξ)αexp(−ηR ln tr(FIMR))

(t+ 1 + ξ)α
, t = 0, 1, 2... (14)

dBt =
(1 + ξ)αexp(−ηB ln tr(FIM−1B ))

(t+ 1 + ξ)α
, t = 0, 1, 2...

(15)
As in [21], α is set to 0.602 as recommended in [23], and
the aggressiveness factors ηR and ηB and stability factor ξ
are included to control the scale of the step sizes and as
inertia against decreasing step sizes over time respectively.
Trajectories generated with the averaged adaptive step sizes
that balance the objectives of proximity and triangulation are
shown in Fig. 5.

Fig. 5: Top: Overhead view of FIM-optimal trajectories using adaptive
step sizes for sources with strengths from 1µCi to 500 µCi. Waypoints
are marked with circles. Notice that step sizes are adjusted to favor range
information for lower strength sources and favor bearing information for
those with higher strengths. Bottom: Side view.
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III. EXPERIMENTS

This paper presents two sets of experiments that evaluate
the proposed radiation mapping and active source localiza-
tion approaches separately. For the first set of experiments,
a ground robot was equipped with a Polaris-H gamma
camera to follow a predetermined set of dwells and localize
multiple point sources of various isotopes and strengths. The
second set of experiments examined the source localization
efficiency and accuracy of the developed control law across
a range static and adaptive step sizes in simulation.

A. Passive Source Localization

Experiments testing the proposed radiation mapping
method were conducted in two laboratory environments: a
small uncluttered room with 5×4 m2 meters of open space,
and a large and cluttered room approximately 14×6 m2 in
size (see Fig. 6 for representative images).

A total of 4 tests were performed in the two environments,
where each test varied the robot’s trajectory, number of
dwells, surrounding point sources, and degree of attenuation.
Ground truth measurements of the source locations were
recorded to evaluate the accuracy of source locations esti-
mated from LiDAR odometry [24] and MLEM. Details of
the four performed experiments can be found in Table I,
which compares a baseline, experimental results using the
approach described in Section II-A, and simulation results.
A voxel size of 10 cm was used for the radiation map.

Quantitatively, sources were localized to an average error
of 0.26 m across the conducted tests or 0.6% of the envi-
ronment dimensions. Qualitatively, the estimated and ground
truth source locations are placed in the context of the LIDAR
map generated by the robot for tests 3 and 4 in Fig. 7.

For comparison with a count-based source localization
method, the particle filter and mean-shift-based algorithm
from [25] was implemented due to the minimal assumptions
theoretically required for the localization of multiple sources.
Each particle is a hypothesis of a source location and
strength, and by only updating the weights of particles within
a defined radius of a measurement location, an arbitrary
number of sources can be localized in largely disjoint regions
through mean-shift clustering. For all tests, the measurement
radius was set to 5 m and the filter was initialized with 1000
particles uniformly sampled throughout the environment with
the correct source strength.

As expected, the baseline performed poorly in the large,
cluttered environment with an average localization error of
1.931 m as a result of unmodeled attenuation. The baseline
also suprisingly performed poorly in the small, uncluttered
environment due to two reasons. The observed count rate is
not only dependent on the strength, location, and intermedi-
ate attenuation of the source, but also on roughly modeled
detector characteristics (e.g. size, intrinsic efficiency) and
stochasticity of radioactive decay. Even when all particles
were initialized with the correct source strength, the observed
count rate rarely matched the expected count rate from
particles near the true source location. Second, all radiation
measurements were made in a single plane. As a result,
particle updates based on the inverse square law could not

Fig. 6: Collage of experiments being carried out in the small (top left and
bottom left) and large (right) laboratory environments with a ground robot
equipped with a gamma camera.

break the symmetry in the z-axis and struggled to correctly
predict the height of the sources.

B. Simulation Environment Development and Validation

A radiation simulation environment that models the in-
teraction between gamma photons and the Polaris-H sensor
was developed in GEANT4, a particle physics simulator de-
veloped by CERN. To validate the developed simulation for
active source localization, the experiments were replicated
with the same source distribution, dwell times, and dwell
points. The comparable results from the simulation are also
provided in Table I.

C. Active Source Localization

The proposed control law and adaptive step size was
evaluated statistically by running a large number of random-
ized source localization tests. The robot was initialized in a
random location in a 15×15×15 m3 space to localize a 500
µCi Cs-137 source placed at the center. 100 tests were run for
each of the following step sizes: 1 m, 2 m, 4 m, and adaptive.
The following parameters were used for the adaptive step
size: ηR = 0.50, ηB = 0.15, ξ = 50, α = 0.602, and the
map voxels were set to 10 cm. Each test was carried out until
the variance of the source locazation estimate fell below 0.15
m or 30 minutes had elapsed. Note that the robot dwelled
at each waypoint until the number of photons necessary for
sufficient resolution of source direction had been observed.
The results can be found in Table II.

TABLE I: Passive Source Localization Results

Test Path (number Source Baseline / Experiment / Simulation
(of dwells*) (µCi) Localization Error (m)

1-SM Straight (6) Na-22 (61.28) 0.471 / 0.034 / 0.034
2-SM† Straight (6) Na-22 (61.28) 0.528 / 0.096 / 0.031
3-SM Lawnmower (11) Cs-137 (100) 0.431 / 0.055 / 0.053

Na-22 (61.28) 0.560 / 0.120 / 0.037
Co-60 (48.60) 0.516 / 0.105 / 0.089
Ba-1333 (82.11) 0.970 / 0.228 / 0.110

4-LG Coverage (10) Cs-137 (27.24) 3.796 / 0.2621 / 0.0632
Cs-137 (100) 2.608 / 1.055 / 1.1859
Na-22 (61.28) 0.769 / 0.490 / 0.584
Co-60 (48.60) 0.552 / 0.188 / 0.048

*All dwells were 1 minute in duration.
†Attenuation around the source increased from test 1-SM with a lead brick
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Fig 7: Left: Test 3: Estimated
locations of Ba-133 (purple),
Cs-137 (red), Co-60 (orange),
and Na-22 (green) sources are
shown as cubes. Right: Test
4: Estimated locations of Co-
60 (orange) and Na-22 (red)
are shown as cubes. Both:
Ground truth source locations
are shown as spheres, with
the trajectory of the robot in
red and spatial map in green.

TABLE II: Active Source Localization Results

Step Sizes 1 m 2 m 4 m Adaptive

Rate of success 53% 95% 90% 100%
# Waypoints

[
µ, (σ)

]
17.32 (1.01) 11.65 (0.69) 10.29 (0.79) 11.88 (0.97)

Localization error, cm
[
µ, (σ)

]
1.40 (1.95) 0.62 (1.74) 2.59 (2.47) 2.50 (2.41)

Total dwell time, min
[
µ, (σ)

]
12.47 (2.46) 10.36 (2.54) 9.38 (2.38) 6.88 (1.87)

Distance traveled, m
[
µ, (σ)

]
8.16 (1.95) 10.65 (2.15) 18.58 (3.42) 6.87 (1.84)

A fixed step size of 1 m often failed to approach the source
quickly enough to localize before the 30-minute time limit.
A fixed size of 4 m obtained comparable localization error
but at the cost of a high distance traveled as it could not
decrease its step size near the source. A fixed size of 2 m had
the lowest source localization error as a good compromise
between the two static step sizes. However, the adaptive
approach had the lowest dwell time and distance traveled
for a comparable source localization error as it was able
to quickly approach the source then circle the source with
smaller step sizes. This flexibility also allowed the adaptive
step size to have a 100% completion rate.

IV. CONCLUSION
This paper explores an active approach to 3D radiation

source localization using a gamma camera. A passive radia-
tion mapping framework that leverages the camera’s bearing
observations to build a voxel grid of radiation occupancy is
first developed. The paper then presents a control law that
greedily selects new waypoints that maximize the informa-
tion provided by the camera’s range and bearing observations
with respect to the source location estimates obtained by
thresholding the occupancy map. Finally the sensitivity of
the proposed approach to step size is addressed with a
policy that adapts the step size online according to the
information observed. Experiments conducted in laboratory
environments and in simulation demonstrate the efficacy of
the approaches presented to choose efficient, informative 3D
paths for accurate source localization.
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